Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (9): 913-920.doi: 10.19982/j.issn.1000-6621.20230163
• Review Articles • Previous Articles
Li Yiqi1, Liu Yongming2(), Chen Yaolong3, Yang Yinjun1, Liu Bei1, Wen Fayan1, Li Yan1
Received:
2023-05-18
Online:
2023-09-10
Published:
2023-09-01
Contact:
Liu Yongming,Email:Supported by:
CLC Number:
Li Yiqi, Liu Yongming, Chen Yaolong, Yang Yinjun, Liu Bei, Wen Fayan, Li Yan. Research progress on animal model of Brucella spondylitis[J]. Chinese Journal of Antituberculosis, 2023, 45(9): 913-920. doi: 10.19982/j.issn.1000-6621.20230163
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230163
[1] |
Al Jindan R. Scenario of pathogenesis and socioeconomic burden of human brucellosis in Saudi Arabia. Saudi J Biol Sci, 2021, 28(1):272-279. doi:10.1016/j.sjbs.2020.09.059.
doi: 10.1016/j.sjbs.2020.09.059 pmid: 33424306 |
[2] |
Dong SB, Wang LP, Wu CX, et al. A case of brucellosis concomitant with HIV infection in China. Infect Dis Poverty, 2020, 9(1):6. doi:10.1186/s40249-020-0624-7.
doi: 10.1186/s40249-020-0624-7 |
[3] |
王晓欢, 姜海. 全球人布鲁氏杆菌病流行特征. 中华流行病学杂志, 2020, 41 (10): 1717-1722. doi:10.3760/cma.j.cn112338-20191022-00751.
doi: 10.3760/cma.j.cn112338-20191022-00751 |
[4] |
Moreno E. The one hundred year journey of the genus Brucella (Meyer and Shaw 1920). FEMS Microbiol Rev, 2021, 45(1):fuaa045. doi:10.1093/femsre/fuaa045.
doi: 10.1093/femsre/fuaa045 URL |
[5] |
Fritz CL, Nguyen A, Vugia DJ. Epidemiology of Brucellosis in California, 1993—2017: A Continuing Foodborne Disease Risk for Older Latinos. Clin Infect Dis, 2021, 73(11):2023-2030. doi:10.1093/cid/ciab551.
doi: 10.1093/cid/ciab551 URL |
[6] |
Ma H, Zhang N, Liu J, et al. Pathological features of Brucella spondylitis: A single-center study. Ann Diagn Pathol, 2022, 58:151910. doi:10.1016/j.anndiagpath.2022.151910.
doi: 10.1016/j.anndiagpath.2022.151910 URL |
[7] |
中国防痨协会骨关节结核专业分会, 中国华北骨结核联盟, 中国西部骨结核联盟. 布鲁氏杆菌性脊柱炎诊断及治疗专家共识. 中国防痨杂志, 2022, 44(6):531-538. doi:10.19982/j.issn.1000-6621.20220138.
doi: 10.19982/j.issn.1000-6621.20220138 |
[8] |
Rizkalla JM, Alhreish K, Syed IY. Spinal Brucellosis: A Case Report and Review of the Literature. J Orthop Case Rep, 2021, 11(3):1-5. doi:10.13107/jocr.2021.v11.i03.2060.
doi: 10.13107/jocr.2021.v11.i03.2060 |
[9] |
Khurana SK, Sehrawat A, Tiwari R, et al. Bovine brucellosis—a comprehensive review. Vet Q, 2021, 41(1):61-88. doi:10.1080/01652176.2020.1868616.
doi: 10.1080/01652176.2020.1868616 pmid: 33353489 |
[10] |
Oliveira SC. Host Immune Responses and Pathogenesis to Brucella spp. Infection. Pathogens, 2021, 10(3):288. doi:10.3390/pathogens10030288.
doi: 10.3390/pathogens10030288 |
[11] |
Paci V, Krasteva I, Orsini M, et al. Proteomic analysis of Brucella melitensis and Brucella ovis for identification of virulence factor using bioinformatics approachs. Mol Cell Probes, 2020, 53:101581. doi:10.1016/j.mcp.2020.101581.
doi: 10.1016/j.mcp.2020.101581 URL |
[12] |
Sankarasubramanian J, Vishnu US, Gunasekaran P, et al. Identification of genetic variants of Brucella spp. through genome-wide association studies. Infect Genet Evol, 2017, 56:92-98. doi:10.1016/j.meegid.2017.11.016.
doi: S1567-1348(17)30397-0 pmid: 29154929 |
[13] |
King KA, Caudill MT, Caswell CC. A comprehensive review of small regulatory RNAs in Brucella spp. Front Vet Sci, 2022, 9:1026220. doi:10.3389/fvets.2022.1026220.
doi: 10.3389/fvets.2022.1026220 URL |
[14] |
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, et al. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci, 2020, 21(20):7749. doi:10.3390/ijms21207749.
doi: 10.3390/ijms21207749 URL |
[15] | Alamian S, Dadar M, Etemadi A, et al. Antimicrobial susceptibility of Brucella spp. isolated from Iranian patients during 2016 to 2018. Iran J Microbiol, 2019, 11(5):363-367. |
[16] |
Yuan HT, Wang CL, Liu LN, et al. Epidemiologically charac-teristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in Hinggan League of the Inner Mongolia Autonomous Region, China. Infect Dis Poverty, 2020, 9(1):79. doi:10.1186/s40249-020-00697-0.
doi: 10.1186/s40249-020-00697-0 |
[17] |
Roop RM 2nd, Barton IS, Hopersberger D, et al. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev, 2021, 85(1):e00021-19. doi:10.1128/MMBR.00021-19.
doi: 10.1128/MMBR.00021-19 |
[18] |
Buddingh GJ, Womack FC. Observations on the infection of chick embryos with bacterium tularense, brucella, and pasteurella pestis. J Exp Med, 1941, 74(3):213-222. doi:10.1084/jem.74.3.213.
doi: 10.1084/jem.74.3.213 pmid: 19871129 |
[19] |
Osman AY, Kadir AA, Jesse FF, et al. Modelling the immunopathophysiology of Brucella melitensis and its lipopolysaccharide in mice infected via oral route of exposure. Microb Pathog, 2019, 136:103669. doi:10.1016/j.micpath.2019.103669.
doi: 10.1016/j.micpath.2019.103669 URL |
[20] |
Stranahan LW, Khalaf OH, Garcia-Gonzalez DG, et al. Charac-terization of Brucella canis infection in mice. PLoS One, 2019, 14(6):e0218809. doi:10.1371/journal.pone.0218809.
doi: 10.1371/journal.pone.0218809 URL |
[21] |
Khalaf OH, Chaki SP, Garcia-Gonzalez DG, et al. The NOD-scid IL2rγnull Mouse Model Is Suitable for the Study of Osteoarticular Brucellosis and Vaccine Safety. Infect Immun, 2019, 87(6):e00901-18. doi:10.1128/IAI.00901-18.
doi: 10.1128/IAI.00901-18 |
[22] |
Dabral N, Burcham GN, Jain-Gupta N, et al. Overexpression of wbkF gene in Brucella abortus RB51WboA leads to increased O-polysaccharide expression and enhanced vaccine efficacy against B.abortus 2308, B.melitensis 16M, and B.suis 1330 in a murine brucellosis model. PLoS One, 2019, 14(3):e0213587. doi:10.1371/journal.pone.0213587.
doi: 10.1371/journal.pone.0213587 |
[23] |
Cai X, Xu T, Xun C, et al. Establishment and Initial Testing of a Medium-Sized, Surgically Feasible Animal Model for Brucellar Spondylodiscitis: A Preliminary Study. Biomed Res Int, 2019, 2019:7368627. doi:10.1155/2019/7368627.
doi: 10.1155/2019/7368627 |
[24] |
Bugybayeva D, Kydyrbayev Z, Zinina N, et al. A new candidate vaccine for human brucellosis based on influenza viral vectors: a preliminary investigation for the development of an immunization schedule in a guinea pig model. Infect Dis Poverty, 2021, 10(1):13. doi:10.1186/s40249-021-00801-y.
doi: 10.1186/s40249-021-00801-y pmid: 33593447 |
[25] |
Elzer PH, Hagius SD, Davis DS, et al. Characterization of the caprine model for ruminant brucellosis. Vet Microbiol, 2002, 90(1-4):425-431. doi:10.1016/s0378-1135(02)00226-2.
doi: 10.1016/s0378-1135(02)00226-2 pmid: 12414161 |
[26] |
Yingst SL, Huzella LM, Chuvala L, et al. A rhesus macaque (Macaca mulatta) model of aerosol-exposure brucellosis (Brucella suis): pathology and diagnostic implications. J Med Microbiol, 2010, 59(Pt 6):724-730. doi:10.1099/jmm.0.017285-0.
doi: 10.1099/jmm.0.017285-0 pmid: 20223898 |
[27] |
Enright FM, Araya LN, Elzer PH, et al. Comparative histopathology in BALB/c mice infected with virulent and attenuated strains of Brucella abortus. Vet Immunol Immunopathol, 1990, 26(2):171-182. doi:10.1016/0165-2427(90)90065-z.
doi: 10.1016/0165-2427(90)90065-z URL |
[28] |
Lacey CA, Mitchell WJ, Brown CR, et al. Temporal Role for MyD 88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation. Infect Immun, 2017, 85(3):e00961-16. doi:10.1128/IAI.00961-16.
doi: 10.1128/IAI.00961-16 |
[29] |
Magnani DM, Lyons ET, Forde TS, et al. Osteoarticular tissue infection and development of skeletal pathology in murine brucellosis. Dis Model Mech, 2013, 6(3):811-818. doi:10.1242/dmm.011056.
doi: 10.1242/dmm.011056 pmid: 23519029 |
[30] |
Rajashekara G, Glover DA, Krepps M, et al. Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol, 2005, 7(10):1459-1473. doi:10.1111/j.1462-5822.2005.00570.x.
doi: 10.1111/j.1462-5822.2005.00570.x pmid: 16153245 |
[31] |
Skyberg JA, Thornburg T, Kochetkova I, et al. IFN-γ-deficient mice develop IL-1-dependent cutaneous and musculoskeletal inflammation during experimental brucellosis. J Leukoc Biol, 2012, 92(2):375-387. doi:10.1189/jlb.1211626.
doi: 10.1189/jlb.1211626 URL |
[32] |
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res, 2014, 6(2):114-118.
pmid: 24489990 |
[33] |
Wu J, Xue J, Huang R, et al. A rabbit model of lumbar distraction spinal cord injury. Spine J, 2016, 16(5):643-658.
doi: 10.1016/j.spinee.2015.12.013 pmid: 26704859 |
[34] |
Cingöz İD. Role of Surgery in Brucella Spondylodiscitis: An Evaluation of 28 Patients. Cureus, 2023, 15(1):e33542. doi:10.7759/cureus.33542.
doi: 10.7759/cureus.33542 |
[35] |
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine, 2019, 37(30):3981-3988. doi:10.1016/j.vaccine.2019.05.084.
doi: S0264-410X(19)30731-5 pmid: 31176541 |
[36] |
Neave MJ, Hall RN, Huang N, et al. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses, 2018, 10(9):512. doi:10.3390/v10090512.
doi: 10.3390/v10090512 URL |
[37] | Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med, 2011, 61(1):76-85. |
[38] |
Long C, Burgers E, Copple C, et al. Brucella canis discospondylitis in 33 dogs. Front Vet Sci, 2022, 9:1043610. doi:10.3389/fvets.2022.1043610.
doi: 10.3389/fvets.2022.1043610 URL |
[39] | Forbes JN, Frederick SW, Savage MY, et al. Brucella canis sacroiliitis and discospondylitis in a dog. Can Vet J, 2019, 60(12):1301-1304. |
[40] |
Huang Q, Liao X, Yang S, et al. Brucellosis spondylitis. Int J Infect Dis, 2020, 95:462-463. doi:10.1016/j.ijid.2020.03.052.
doi: S1201-9712(20)30184-3 pmid: 32251793 |
[41] |
杨新明, 孟宪勇, 胡长波, 等. 布氏杆菌性脊柱炎的规范化诊断及外科标准化治疗. 中华骨与关节外科杂志, 2016, 9(4):308-316. doi:10.3969/j.issn.2095-9958.2016.04-09.
doi: 10.3969/j.issn.2095-9958.2016.04-09 |
[42] |
Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. Osteoarticular manifestations of human brucellosis: A review. World J Orthop, 2019, 10(2):54-62. doi:10.5312/wjo.v10.i2.54.
doi: 10.5312/wjo.v10.i2.54 pmid: 30788222 |
[43] |
Louche A, Blanco A, Lacerda TLS, et al. Brucella effectors NyxA and NyxB target SENP 3 to modulate the subcellular localisation of nucleolar proteins. Nat Commun, 2023, 14(1):102. doi:10.1038/s41467-022-35763-8.
doi: 10.1038/s41467-022-35763-8 |
[44] |
Zhang D, Li X, Pi C, et al. Osteoporosis-decreased extracellular matrix stiffness impairs connexin 43-mediated gap junction intercellular communication in osteocytes. Acta Biochim Biophys Sin (Shanghai), 2020, 52(5):517-526. doi:10.1093/abbs/gmaa025.
doi: 10.1093/abbs/gmaa025 URL |
[45] |
Joyce K, Sakai D, Pandit A. Preclinical models of vertebral osteomyelitis and associated infections: Current models and recommendations for study design. JOR Spine, 2021, 4(2):e1142. doi:10.1002/jsp2.1142.
doi: 10.1002/jsp2.1142 pmid: 34337331 |
[46] |
Osman AY, Saharee AA, Jesse FF, et al. Comparative experi-mental study of Brucella melitensis and its lipopolysaccharide in mouse model infected via subcutaneous route of exposure. Microb Pathog, 2018, 116:318-327. doi:10.1016/j.micpath.2018.01.007.
doi: 10.1016/j.micpath.2018.01.007 URL |
[47] |
杨军, 邓强, 彭冉东, 等. 脊柱结核兔模型的建立及研究进展. 中国防痨杂志, 2023, 45(5):520-525. doi:10.19982/j.issn.1000-6621.20220516.
doi: 10.19982/j.issn.1000-6621.20220516 |
[48] |
Dutta D, Sen A, Gupta D, et al. Childhood Brucellosis in Eastern India. Indian J Pediatr, 2018, 85(4):266-271. doi:10.1007/s12098-017-2513-z.
doi: 10.1007/s12098-017-2513-z pmid: 29071584 |
[49] |
Tulu D. Bovine Brucellosis: Epidemiology, Public Health Implications, and Status of Brucellosis in Ethiopia. Vet Med (Auckl), 2022, 13:21-30. doi:10.2147/VMRR.S347337.
doi: 10.2147/VMRR.S347337 pmid: 35028300 |
[1] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[2] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[3] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[4] | Fan Jun, Wang Heng, Lan Tinglong, Dong Weijie, Tang Kai, Li Yuan, Yan Guangxuan, Xu Shangsheng, Kang Zhigang, Qin Shibing. Clinical characteristics and surgical outcomes of 12 cases of non-tuberculous mycobacterial spondylitis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 87-95. |
[5] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[6] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[7] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[8] | Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. |
[9] | Chen Yujie, Wang Linghua, Cheng Xiaoyan, Li Huiyuan. Research progress on latent tuberculosis infection in medical staff [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1541-1547. |
[10] | He Jing, Zhang Zhongfa. Research progress on mixed infection in pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1566-1572. |
[11] | Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. |
[12] | Wang Yujin, Chu Naihui, Nie Wenjuan. Research progress in the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1395-1399. |
[13] | Yan Hongxuan, Yuan Jinfeng, Wang Yilin, Pang Yu, Gao Mengqiu. Advances in the host-directed therapy of tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1273-1282. |
[14] | Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. |
[15] | Wang Jiani, Xi Mingxia. Progress in catastrophic health expenditures for tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||