Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (7): 839-844.doi: 10.19982/j.issn.1000-6621.20240118
• Review Articles • Previous Articles Next Articles
Liu Haohan, Ma Zichun, Pang Yu, Li Shanshan()
Received:
2024-03-29
Online:
2024-07-10
Published:
2024-07-01
Contact:
Li Shanshan
E-mail:lss9011@126.com
Supported by:
CLC Number:
Liu Haohan, Ma Zichun, Pang Yu, Li Shanshan. The function and mechanism of G protein-coupled receptors in host against Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2024, 46(7): 839-844. doi: 10.19982/j.issn.1000-6621.20240118
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240118
[1] |
Weis WI, Kobilka BK. The Molecular Basis of G Protein-Coupled Receptor Activation. Annu Rev Biochem, 2018, 87: 897-919. doi:10.1146/annurev-biochem-060614-033910.
pmid: 29925258 |
[2] |
Elkington PT, Emerson JE, Lopez-Pascua LD, et al. Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p 38 MAPK switch. J Immunol, 2005, 175(8):5333-5340. doi:10.4049/jimmunol.175.8.5333.
pmid: 16210639 |
[3] | Dixon RA, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature, 1986, 321(6065):75-79. doi:10.1038/321075a0. |
[4] |
Sojka AC, Brennan KM, Maizels ET, et al. The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research. J Biocommun, 2017, 41(1):e6. doi:10.5210/jbc.v41i1.7309.
pmid: 36405408 |
[5] | Alexander SPH, Christopoulos A, Davenport AP, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol, 2019, 176 Suppl 1(Suppl 1): S21-S141. doi:10.1111/bph.14748. |
[6] | Crilly SE, Puthenveedu MA. Compartmentalized GPCR Signaling from Intracellular Membranes. J Membr Biol, 2021, 254(3):259-271. doi:10.1007/s00232-020-00158-7. |
[7] |
Miyano K, Sudo Y, Yokoyama A, et al. History of the G protein-coupled receptor (GPCR) assays from traditional to a state-of-the-art biosensor assay. J Pharmacol Sci, 2014, 126(4):302-309. doi:10.1254/jphs.14R13CP.
pmid: 25421710 |
[8] | Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol, 2022,13:747799. doi:10.3389/fimmu.2022.747799. |
[9] | 王晓蕾. 结核病感染免疫相关因子IL-10的表达调控及MCP-1基因多态性的研究. 济南:山东大学, 2018. |
[10] | Peters W, Scott HM, Chambers HF, et al. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2001, 98(14):7958-7963. doi:10.1073/pnas.131207398. |
[11] | Møller AS, Øvstebø R, Westvik AB, et al. Effects of bacterial cell wall components (PAMPs) on the expression of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and the chemokine receptor CCR2 by purified human blood monocytes. J Endotoxin Res, 2003, 9(6):349-360. doi:10.1179/096805103225002791. |
[12] | Arias MA, Pantoja AE, Jaramillo G, et al. Chemokine receptor expression and modulation by Mycobacterium tuberculosis antigens on mononuclear cells from human lymphoid tissues. Immunology, 2006, 118(2):171-184. doi:10.1111/j.1365-2567.2006.02352.x. |
[13] | Joosten SA, van Meijgaarden KE, Savage ND, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A, 2007, 104(19):8029-8034. doi:10.1073/pnas.0702257104. |
[14] | Wahl SM, Greenwell-Wild T, Peng G, et al. Co-infection with opportunistic pathogens promotes human immunodeficiency virus type 1 infection in macrophages. J Infect Dis, 1999,179 Suppl 3:S457-S460. doi:10.1086/314814. |
[15] | Novita BD, Tjahjono Y, Wijaya S, et al. Characterization of chemokine and cytokine expression pattern in tuberculous lymphadenitis patient. Front Immunol, 2022, 13: 983269. doi:10.3389/fimmu.2022.983269. |
[16] | Badewa AP, Quinton LJ, Shellito JE, et al. Chemokine receptor 5 and its ligands in the immune response to murine tuberculosis. Tuberculosis (Edinb), 2005, 85(3):185-195. doi:10.1016/j.tube.2004.10.003. |
[17] | Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses, 2021, 13(5): 735. doi:10.3390/v13050735. |
[18] | Wahl SM, Greenwell-Wild T, Peng G, et al. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression. Proc Natl Acad Sci U S A, 1998, 95(21):12574-12579. doi:10.1073/pnas.95.21.12574. |
[19] |
Boro M, Balaji KN. CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2. J Immunol, 2017, 199(5):1660-1671. doi:10.4049/jimmunol.1700129.
pmid: 28739876 |
[20] | Gonçalves AS, Appelberg R. The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol, 2002, 55(6): 585-591. doi:10.1046/j.1365-3083.2002.01097.x. |
[21] |
Koper OM, Kamińska J, Sawicki K, et al. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med, 2018, 27(6):849-856. doi:10.17219/acem/68846.
pmid: 29893515 |
[22] | Sommer F, Torraca V, Kamel SM, et al. Frontline Science: Antagonism between regular and atypical Cxcr 3 receptors regulates macrophage migration during infection and injury in zebrafish. J Leukoc Biol, 2020, 107(2):185-203. doi:10.1002/JLB.2HI0119-006R. |
[23] | Sun H, Fan J, Shang X, et al. Study on the relationship between CXCR3 and its ligands and tubal tuberculosis. Life Sci, 2021,272:119047. doi:10.1016/j.lfs.2021.119047. |
[24] |
Juarez J, Bendall L. SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol, 2004, 19(1):299-309. doi:10.14670/HH-19.299.
pmid: 14702198 |
[25] | Cowley S. The biology of HIV infection. Lepr Rev, 2001, 72(2):212-220. doi:10.5935/0305-7518.20010028. |
[26] |
Hoshino Y, Tse DB, Rochford G, et al. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages. J Immunol, 2004, 172(10):6251-6258. doi:10.4049/jimmunol.172.10.6251.
pmid: 15128813 |
[27] | Torraca V, Tulotta C, Snaar-Jagalska BE, et al. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. Sci Rep, 2017,7:45061. doi:10.1038/srep45061. |
[28] |
Gopal R, Rangel-Moreno J, Slight S, et al. Interleukin-17-dependent CXCL 13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 2013, 6(5):972-984. doi:10.1038/mi.2012.135.
pmid: 23299616 |
[29] | Zhang Y, Li S, Liu Q, et al. Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1. Inflammation, 2020, 43(2):487-506. doi:10.1007/s10753-019-01132-9. |
[30] | Hall JD, Kurtz SL, Rigel NW, et al. The impact of chemokine receptor CX3CR1 deficiency during respiratory infections with Mycobacterium tuberculosis or Francisella tularensis. Clin Exp Immunol, 2009, 156(2):278-284. doi:10.1111/j.1365-2249.2009.03882.x. |
[31] |
Vance J, Santos A, Sadofsky L, et al. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung, 2019, 197(1):89-94. doi:10.1007/s00408-018-0181-z.
pmid: 30474709 |
[32] | Bo H, Moure UAE, Yang Y, et al. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol, 2023,13:1062963. doi:10.3389/fcimb.2023.1062963. |
[33] | Recio C, Lucy D, Purvis GSD, et al. Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages. Front Immunol, 2018,9:1419. doi:10.3389/fimmu.2018.01419. |
[34] |
Peterson PK, Gekker G, Hu S, et al. Morphine stimulates phagocytosis of Mycobacterium tuberculosis by human microglial cells: involvement of a G protein-coupled opiate receptor. Adv Neuroimmunol, 1995, 5(3):299-309. doi:10.1016/0960-5428(95)00020-3.
pmid: 8748073 |
[35] | Lee HJ, Ko HJ, Song DK, et al. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A-Phosphatidylinositol 3 Kinase-p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages. Front Immunol, 2018,9:920. doi:10.3389/fimmu.2018.00920. |
[36] |
Santos AA Jr, Rodrigues-Junior V, Zanin RF, et al. Implication of purinergic P2X7 receptor in M.tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology, 2013, 218(8):1104-1112. doi:10.1016/j.imbio.2013.03.003.
pmid: 23583008 |
[37] |
Soares-Bezerra RJ, Pinho RT, Bisaggio Rda C, et al. The Search for New Agonists to P2X7R for Clinical Use: Tuberculosis as a Possible Target. Cell Physiol Biochem, 2015, 37(2):409-418. doi:10.1159/000430364.
pmid: 26314826 |
[38] |
Humphreys BD, Rice J, Kertesy SB, et al. Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem, 2000, 275(35):26792-26798. doi:10.1074/jbc.M002770200.
pmid: 10854431 |
[39] |
Kusner DJ, Barton JA. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol, 2001, 167(6):3308-3315. doi:10.4049/jimmunol.167.6.3308.
pmid: 11544319 |
[40] |
Coutinho-Silva R, Stahl L, Raymond MN, et al. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity, 2003, 19(3):403-412. doi:10.1016/s1074-7613(03)00235-8.
pmid: 14499115 |
[41] | Amaral EP, Ribeiro SC, Lanes VR, et al. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog, 2014, 10(7):e1004188. doi:10.1371/journal.ppat.1004188. |
[42] | Di Liberto D, Locati M, Caccamo N, et al. Role of the chemokine decoy receptor D 6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J Exp Med, 2008, 205(9):2075-2084. doi:10.1084/jem.20070608. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[11] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
[12] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[13] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[14] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[15] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||