Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (6): 708-718.doi: 10.19982/j.issn.1000-6621.20250011
• Original Articles • Previous Articles Next Articles
Li Longfen1, Shi Chunjing1, Luo Yun1, Zhang Huajie1, Liu Jun2, Wang Ge1, Zhao Yanhong1, Yuan Lijuan1, Li Shan1, Li Wenming1(), Shen Lingjun1(
)
Received:
2025-01-11
Online:
2025-06-10
Published:
2025-06-11
Contact:
Li Wenming, Email: Supported by:
CLC Number:
Li Longfen, Shi Chunjing, Luo Yun, Zhang Huajie, Liu Jun, Wang Ge, Zhao Yanhong, Yuan Lijuan, Li Shan, Li Wenming, Shen Lingjun. Establishing and validating a prediction model for HIV-associated nontuberculous mycobacterial disease based on machine learning[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 708-718. doi: 10.19982/j.issn.1000-6621.20250011
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250011
指标 | 观察组(77例) | 对照组(262例) | 统计检验值 | P值 |
---|---|---|---|---|
性别[例(构成比,%)] | χ2=1.249 | 0.264 | ||
男性 | 51(66.2) | 155(59.2) | ||
女性 | 26(33.8) | 107(40.8) | ||
民族[例(构成比,%)] | χ2=0.029 | 0.865 | ||
汉族 | 71(92.2) | 240(91.6) | ||
少数民族 | 6(7.8) | 22(8.4) | ||
年龄(岁, | 44.34±10.30 | 54.92±15.17 | t=5.744 | <0.001 |
合并症[例(发生率,%)] | ||||
糖尿病 | 5(6.5) | 24(9.2) | χ2=0.541 | 0.462 |
高血压 | 6(7.8) | 39(14.9) | χ2=2.601 | 0.107 |
吸烟史 | 44(57.1) | 124(47.3) | χ2=2.293 | 0.130 |
饮酒史 | 31(40.3) | 84(32.1) | χ2=1.785 | 0.182 |
HIV感染途径[例(构成比,%)] | χ2=2.860 | 0.239 | ||
毒品静脉注射 | 4(5.2) | 20(7.6) | ||
性传播 | 48(62.3) | 135(51.6) | ||
母婴、拔牙 | 25(32.5) | 107(40.8) | ||
婚育史[例(构成比,%)] | χ2=5.746 | 0.057 | ||
未婚 | 20(26.0) | 38(14.5) | ||
已婚 | 46(59.7) | 174(66.4) | ||
离异 | 11(14.3) | 50(19.1) |
指标 | 训练集(272例) | 验证集(67例) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照组 (208例) | 观察组 (64例) | 统计 检验值 | P值 | 对照组 (54例) | 观察组 (13例) | 统计 检验值 | P值 | |||||||||
白细胞计数[×109/L, M(Q1,Q3)] | 5.49 (4.48,74.00) | 4.75 (2.91,6.04) | U=-3.040 | 0.002 | 5.65 (4.57,6.73) | 4.33 (2.55,5.31) | U=-2.751 | 0.006 | ||||||||
中性粒细胞计数[×109/L,M(Q1,Q3)] | 3.01 (2.29,4.23) | 3.34 (1.78,4.94) | U=-0.090 | 0.928 | 3.37 (2.54,3.94) | 2.68 (1.34,3.83) | U=-1.514 | 0.130 | ||||||||
中性粒细胞百分比[%, M(Q1,Q3)] | 57.90 (49.23,65.88) | 72.40 (61.33,82.68) | U=-6.144 | <0.001 | 57.45 (52.83,67.93) | 71.70 (48.10,76.10) | U=-0.793 | 0.428 | ||||||||
淋巴细胞计数[×109/L, M(Q1,Q3)] | 1.63 (1.22.145) | 0.70 (0.36,1.10) | U=-8.393 | <0.001 | 1.52 (1.02,2.11) | 0.77 (0.34,1.38) | U=-3.100 | 0.002 | ||||||||
淋巴细胞百分比[%, M(Q1,Q3)] | 30.95 (2238.68) | 15.25 (7.60,24.00) | U=-7.469 | <0.001 | 30.55 (19.88,37.10) | 18.60 (12.80,34.65) | U=-1.364 | 0.173 | ||||||||
单核细胞计数[×109/L, M(Q1,Q3)] | 0.44 (0.35,0.55) | 0.36 (0.24,0.57) | U=-2.527 | 0.011 | 0.45 (0.33,0.59) | 0.34 (0.20,0.47) | U=-2.538 | 0.011 | ||||||||
中性粒细胞与淋巴细胞比值[M(Q1,Q3)] | 1.82 (1.26,2.93) | 4.43 (2.53,10.41) | U=-7.092 | <0.001 | 1.89 (1.40,3.40) | 3.62 (1.35,6.71) | U=-1.046 | 0.295 | ||||||||
血小板与淋巴细胞比值 [M(Q1,Q3)] | 138.89 (100.99,175.86) | 326.37 (194.68,452.61) | U=-7.899 | <0.001 | 116.78 (90.86,206.31) | 282.86 (116.46,402.98) | U=-2.251 | 0.024 | ||||||||
单核细胞与淋巴细胞比值[M(Q1,Q3)] | 0.26 (0.20,0.39) | 0.53 (0.37,0.93) | U=-7.495 | <0.001 | 0.28 (0.19,0.47) | 0.43 (0.25,0.57) | U=-1.514 | 0.130 | ||||||||
系统免疫炎症指数 [M(Q1,Q3)] | 389.79 (261.53,626.30) | 760.43 (475.58,1728.89) | U=-6.017 | <0.001 | 360.22 (252.79,703.41) | 324.10 (257.88,1024.47) | U=-0.460 | 0.646 | ||||||||
预后营养指数[M(Q1,Q3)] | 45.35 (42.11,50.34) | 34.78 (28.01,40.99) | U=-8.660 | <0.001 | 45.96 (41.84,50.94) | 36.70 (32.45,43.45) | U=-3.155 | 0.002 | ||||||||
单核细胞百分比[%, M(Q1,Q3)] | 8.05 (6.53,9.80) | 9.10 (6.43,11.58) | U=-0.977 | 0.329 | 8.00 (6.58,9.80) | 7.90 (7.00,12.20) | U=-0.690 | 0.490 | ||||||||
红细胞[×1012/L, M(Q1,Q3)] | 4.18 (3.67,4.77) | 3.62 (2.86,4.25) | U=-4.857 | <0.001 | 3.99 (3.37,4.49) | 4.04 (3.38,4.38) | U=-0.174 | 0.862 | ||||||||
血红蛋白[g/L,M(Q1,Q3)] | 141.00 (126.00,151.75) | 112.07 (89.50,131.00) | U=-7.056 | <0.001 | 140.00 (119.75,147.50) | 119.00 (98.50,135.00) | U=-2.791 | 0.005 | ||||||||
血小板[×109/L, M(Q1,Q3)] | 212.00 (169.25,267.00) | 207.50 (148.00,63.75) | U=-1.163 | 0.245 | 195.50 (168.50,256.00) | 180.00 (112.50,227.50) | U=-1.348 | 0.178 | ||||||||
总胆红素[μmol/L, M(Q1,Q3)] | 9.60 (6.513.55) | 6.95 (5.15,10.23) | U=-3.460 | 0.001 | 9.45 (6.98,12.40) | 10.20 (6.15,15.35) | U=-0.127 | 0.899 | ||||||||
丙氨酸氨基转移酶[U/L, M(Q1,Q3)] | 4.00 (2.00,7.00) | 3.85 (1.11,6.75) | U=-1.048 | 0.295 | 3.00 (1.00,7.00) | 5.00 (3.82,6.50) | U=-1.394 | 0.163 | ||||||||
天冬氨酸氨基转移酶 [U/L,M(Q1,Q3)] | 23.41 (18.00,35.48) | 30.87 (20.25,50.12) | U=-2.376 | 0.018 | 22.00 (18.75,35.09) | 26.00 (18.00,44.50) | U=-0.730 | 0.465 | ||||||||
白蛋白[g/L,M(Q1,Q3)] | 37.70 (34.23,40.90) | 30.60 (24.93,36.28) | U=-6.915 | <0.001 | 37.70 (35.18,41.28) | 32.30 (29.80,37.60) | U=-2.688 | 0.007 | ||||||||
前白蛋白(mg/L) | 228.50 (187.75,267.75) | 162.00 (115.25,246.94) | U=-4.775 | <0.001 | 218.50 (179.50,267.50) | 209.00 (115.00,231.50) | U=-1.990 | 0.047 | ||||||||
肌酐[μmol/L,M(Q1,Q3)] | 60.00 (51.00,72.75) | 58.00 (45.00,66.75) | U=-2.003 | 0.045 | 61.50 (49.00,70.00) | 53.00 (25.00,65.00) | U=-1.245 | 0.213 | ||||||||
尿酸[μmol/L,M(Q1,Q3)] | 307.50 (251.00,372.00) | 312.50 (254.50,416.00) | U=-0.954 | 0.340 | 294.00 (248.75,395.25) | 324.00 (227.00,437.50) | U=-0.420 | 0.674 | ||||||||
补体1[μ/ml,M(Q1,Q3)] | 196.00 (167.00,222.00) | 228.00 (184.00,266.25) | U=-3.645 | <0.001 | 201.00 (176.75,225.25) | 260.00 (198.00,310.00) | U=-2.331 | 0.020 | ||||||||
CD45+T淋巴细胞[个/μl,M(Q1,Q3)] | 1659.62 (1208.14,2189.72) | 763.76 (323.38,1098.00) | U=-7.101 | <0.001 | 1623.95 (1099.50,2356.38) | 703.00 (476.00,1501.64) | U=-3.314 | 0.001 | ||||||||
C-反应蛋白[mg/L, M(Q1,Q3)] | 2.72 (0.82,7.54) | 32.10 (5.33,60.00) | U=-6.369 | <0.001 | 3.52 (0.93,13.18) | 8.90 (2.73,36.15) | U=-1.705 | 0.088 | ||||||||
血清淀粉样蛋白A[mg/L,M(Q1,Q3)] | 3.80 (1.40,12.00) | 112.50 (5.13,31.60) | U=-6.119 | <0.001 | 3.75 (1.00,33.33) | 23.30 (3.65,87.35) | U=-1.324 | 0.185 | ||||||||
白细胞介素-6[pg/ml, M(Q1,Q3)] | 4.02 (1.95,8.34) | 15.55 (5.28,59.78) | U=-5.825 | <0.001 | 3.26 (1.50,6.58) | 12.30 (3.50,28.75) | U=-2.883 | 0.004 | ||||||||
降钙素原[ng/ml, M(Q1,Q3)] | 0.04 (0.02,0.07) | 0.11 (0.04,0.32) | U=-3.040 | 0.002 | 0.03 (0.02,0.06) | 0.05 (0.03,0.21) | U=-1.613 | 0.107 | ||||||||
HIV-RNA阳性[例(阳 性率,%)]a | 62(29.8) | 46(71.9) | χ2=37.660 | <0.001 | 13(24.1) | 6(46.2) | -b | 0.047 |
[1] |
Donohue MJ. Increasing nontuberculous mycobacteria reporting rates and species diversity identified in clinical laboratory reports. BMC Infect Dis, 2018, 18(1):163. doi:10.1186/s12879-018-3043-7.
pmid: 29631541 |
[2] | Vinnard C, Longworth S, Mezochow A, et al. Deaths Related to Nontuberculous Mycobacterial Infections in the United States, 1999—2014. Ann Am Thorac Soc, 2016, 13(11):1951-1955. doi:10.1513/AnnalsATS.201606-474BC. |
[3] | Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res, 2020, 152(3):185-226. doi:10.4103/ijmr.IJMR_902_20. |
[4] |
Yu X, Liu P, Liu G, et al. The prevalence of non-tuberculous mycobacterial infections in mainland China: Systematic review and meta-analysis. J Infect, 2016, 73(6):558-567. doi:10.1016/j.jinf.2016.08.020.
pmid: 27717784 |
[5] | Shah NM, Davidson JA, Anderson LF, et al. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007—2012. BMC Infect Dis, 2016, 16:195. doi:10.1186/s12879-016-1521-3. |
[6] | Diel R, Jacob J, Lampenius N, et al. Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur Respir J, 2017, 49(4):1602109. doi:10.1183/13993003.02109-2016. |
[7] | Liu Q, Du J, An H, et al. Clinical characteristics of patients with non-tuberculous mycobacterial pulmonary disease: a seven-year follow-up study conducted in a certain tertiary hospital in Beijing. Front Cell Infect Microbiol, 2023, 13:1205225. doi:10.3389/fcimb.2023.1205225. |
[8] | Lopeman RC, Harrison J, Desai M, et al. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms, 2019, 7(3):90. doi:10.3390/microorganisms7030090. |
[9] | 中华医学会感染病学分会艾滋病学组, 中国疾病预防控制中心. 中国艾滋病诊疗指南(2024版). 中华传染病杂志, 2024, 42(5):257-284. doi:10.13419/j.cnki.aids.2024.08.01. |
[10] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[11] | Li S, Yi H, Leng Q, et al. New perspectives on cancer clinical research in the era of big data and machine learning. Surg Oncol, 2024, 52(2):102009. doi:10.1016/j.suronc.2023.102009. |
[12] |
Rheinlander A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunol Lett, 2018, 196:22-32. doi:10.1016/j.imlet.2018.01.009.
pmid: 29366662 |
[13] |
Penninger JM, Irie-Sasaki J, Sasaki T, et al. CD45: new jobs for an old acquaintance. Nat Immunol, 2001, 2(5):389-396. doi:10.1038/87687.
pmid: 11323691 |
[14] | 徐寿文. 抗HIV治疗对艾滋病合并丙肝患者HIV载量和T淋巴细胞亚群的影响. 贵州医药, 2024, 48(9):1420-1422. doi:10.3969/j.issn.1000-744X.2024.09.026. |
[15] | 王维勇, 陈品儒, 何间红, 等. 外周血T淋巴细胞与NTM肺病发病类型的相关性. 广州医科大学学报, 2017(2):90-93. doi:10.3969/j.issn.2095-9664.2017.02.25. |
[16] | Deng H, He Y, Huang G, et al. Predictive value of prognostic nutritional index in patients undergoing gastrectomy for gastric cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2024, 103(41):e39917. doi:10.1097/MD.0000000000039917. |
[17] |
Kouhpayeh H. Different diets and their effect on tuberculosis prevention in HIV patients. J Family Med Prim Care, 2022, 11(4):1369-1376. doi:10.4103/jfmpc.jfmpc_1289_21.
pmid: 35516660 |
[18] | Franco JV, Bongaerts B, Metzendorf MI, et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database Syst Rev, 2024, 6(6):D15890. doi:10.1002/14651858.CD015890.pub2. |
[19] | 汝触会, 陆书生, 陈爱凤, 等. 支气管扩张症合并非结核分枝杆菌肺病患者T淋巴细胞亚群及营养状态研究. 浙江医学, 2021, 43(18):1983-1987. doi:10.12056/j.issn.1006-2785.2021.43.18.2021-1412. |
[20] |
Masoumi M, Sakhaee F, Zolfaghari MR, et al. Mixed pulmonary infection with four isolates of nontuberculous mycobacteria: a case report of mycobacterium bacteremicum infection. Pneumonia (Nathan), 2022, 14(1):7. doi:10.1186/s41479-022-00100-6.
pmid: 36333817 |
[21] | Yanagihara T, Ogata H, Mori A, et al. Amikacin Liposome Inhalation Suspension in the Real-World Management of Refractory Mycobacterium avium Complex Pulmonary Disease. Cureus, 2024, 16(3):e56622. doi:10.7759/cureus.56622. |
[22] |
Hwang H, Lee JK, Heo EY, et al. The factors associated with mortality and progressive disease of nontuberculous mycobacterial lung disease: a systematic review and meta-analysis. Sci Rep, 2023, 13(1):7348. doi:10.1038/s41598-023-34576-z.
pmid: 37147519 |
[23] | Leboueny M, Maloupazoa Siawaya AC, Bouanga LDJ, et al. Changes of C-reactive protein and Procalcitonin after four weeks of treatment in patients with pulmonary TB. J Clin Tuberc Other Mycobact Dis, 2023, 31(1):100348. doi:10.1016/j.jctube.2023.100348. |
[24] |
Song H, Jeong M J, Cha J, et al. Preoperative neutrophil-to-lymphocyte, platelet-to-lymphocyte and monocyte-to-lymphocyte ratio as a prognostic factor in non-endometrioid endometrial cancer. Int J Med Sci, 2021, 18(16):3712-3717. doi:10.7150/ijms.64658.
pmid: 34790044 |
[25] |
Wang H, Guo C, Wang Y, et al. Immune cell composition and its impact on prognosis in children with sepsis. BMC Pediatr, 2024, 24(1):611. doi:10.1186/s12887-024-05087-1.
pmid: 39342149 |
[26] | Adane T, Melku M, Ayalew G, et al. Accuracy of monocyte to lymphocyte ratio for tuberculosis diagnosis and its role in monitoring anti-tuberculosis treatment: Systematic review and meta-analysis. Medicine (Baltimore), 2022, 101(44):e31539. doi:10.1097/MD.0000000000031539. |
[27] | Mayito J, Meya DB, Miriam A, et al. Monocyte to Lymphocyte ratio is highly specific in diagnosing latent tuberculosis and declines significantly following tuberculosis preventive therapy: A cross-sectional and nested prospective observational study. PLoS One, 2023, 18(11):e291834. doi:10.1371/journal.pone.0291834. |
[28] |
Traisathit P, Delory T, Ngo-Giang-Huong N, et al. Brief Report: AIDS-Defining Events and Deaths in HIV-Infected Children and Adolescents on Antiretrovirals: A 14-Year Study in Thailand. J Acquir Immune Defic Syndr, 2018, 77(1):17-22. doi:10.1097/QAI.00000000000001571.
pmid: 29040162 |
[29] |
Nethi AK, Karam AG, Alvarez KS, et al. Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System. J Acquir Immune Defic Syndr, 2024, 97(1):40-47. doi:10.1097/QAI.00000000000003464.
pmid: 39116330 |
[30] |
Al Bulushi Y, Saint-Martin C, Muthukrishnan N, et al. Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis. Sci Rep, 2022, 12(1):2962. doi:10.1038/s41598-022-06884-3.
pmid: 35194075 |
[1] | Ying Guangzhi, Cai Qingshan, Ma Xiaoqing, Chen Lingyan, Chen Yuanyuan. Diagnostic value of Nanopore targeted sequencing for detecting nontuberculous mycobacteria in respiratory specimens [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 589-596. |
[2] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[3] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[4] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[5] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[6] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[7] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[8] | Tan Shouyong. Research progress on comprehensive treatment beyond antibiotic therapy for nontuberculous mycobacterium pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 967-970. |
[9] | Xia Lan, Xiao Yue, Chen Chuang, Xia Yong, Zhu Sui, Zhang Linglin. Analysis of latent tuberculosis infection and active pulmonary tuberculosis diprevalence among newly admitted students of Sichuan Province for the year 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 664-671. |
[10] | Shang Xuetian, Dong Jing, Huang Mailing, Sun Qi, Jia Hongyan, Zhang Lanyue, Liu Qiuyue, Yao Mingxu, Wang Yingchao, Ji Xiuxiu, Du Boping, Xing Aiying, Pan Liping. Transcriptome study on peripheral blood mononuclear cells of latent tuberculosis infection individuals [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 449-460. |
[11] | Yao Yangyang, Liang Changhua, Han Dongming, Cui Junwei, Pan Ben, Wang Huihui, Wei Zhengqi, Zhen Siyu, Wei Hanyu. Differentiation of pulmonary tuberculosis and nontuberculous mycobacterial pulmonary disease based on computed tomography radiomics combined with clinical features [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 302-310. |
[12] | Zhang Jing, Fu Ruonan, Wang Senlu, Feng Jianyu, Zhang Ling, Gulina Badeerhan, Zulikatiayi Abudula, Wang Xinqi. Analysis of willingness of receiving preventive treatment in patients with latent tuberculosis infection among close contacts of pulmonary tuberculosis in high-burden areas [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 165-172. |
[13] | Du Shanshan, Sha Wei, Wang Li. Research progress on co-infection of non-tuberculous mycobacteria and other respiratory pathogens [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1535-1540. |
[14] | Chen Yujie, Wang Linghua, Cheng Xiaoyan, Li Huiyuan. Research progress on latent tuberculosis infection in medical staff [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1541-1547. |
[15] | Li Wenting, Wang Li, Fang Yong, Gu Jin, Sha Wei. The value of CT-based deep learning models in differentiating nontuberculous mycobacterial lung disease from pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1236-1242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||