[1] |
中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570.
|
[2] |
Dahl VN, Mølhave M, Fløe A, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis, 2022, 125: 120-131. doi:10.1016/j.ijid.2022.10.013.
pmid: 36244600
|
[3] |
陈步东, 陈辉, 杜艳妮, 等. 非结核分枝杆菌肺病影像诊断专家共识. 中国研究型医院, 2021, 8(3):1-6. doi:10.19450/j.cnki.jcrh.2021.03.001.
|
[4] |
高珊, 聂文娟, 侯代伦, 等. 非结核分枝杆菌肺病影像学表现及应用人工智能新技术的研究进展. 中国防痨杂志, 2024, 46(3):362-366. doi:10.19982/j.issn.1000-6621.20230404.
|
[5] |
姚阳阳, 梁长华, 韩东明, 等. 基于CT影像组学结合临床特征鉴别肺结核与非结核分枝杆菌肺病的研究. 中国防痨杂志, 2024, 46(3):302-310. doi:10.19982/j.issn.1000-6621.20230337.
|
[6] |
Yan Q, Wang W, Zhao W, et al. Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics. BMC Pulm Med, 2022, 22(1):4. doi:10.1186/s12890-021-01766-2.
pmid: 34991543
|
[7] |
Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench, 2013, 6(1):14-17.
|
[8] |
Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13):4293-4306. doi:10.1007/s00259-021-05432-x.
|
[9] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56: 2000535. doi:10.1183/13993003.00535-2020.
|
[10] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断.2017-11-09.
|
[11] |
Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021, 18(2): 203-211. doi:10.1038/s41592-020-01008-z.
pmid: 33288961
|
[12] |
王登本, 李阳, 魏永梅, 等. 非结核分枝杆菌肺病与肺结核临床及影像学特征Meta分析. 实用中西医结合临床, 2021, 21(16):1-4,71. doi:10.13638/j.issn.1671-4040.2021.16.001.
|
[13] |
Peng L, Wang C, Tian G, et al. Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet. Front Microbiol, 2022, 13:995323. doi:10.3389/fmicb.2022.995323.
|
[14] |
Elkorany AS, Elsharkawy ZF. COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning. Optik (Stuttg), 2021, 231:166405. doi:10.1016/j.ijleo.2021.166405.
|
[15] |
Yadav DP, Jalal AS, Goyal A, et al. COVID-19 radiograph prognosis using a deep CResNeXt network. Multimed Tools Appl, 2023, 8:1-27. doi:10.1007/s11042-023-14960-7.
|
[16] |
Chen JX, Shen YC, Peng SL, et al. Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention. Phys Eng Sci Med, 2024, 47(2):755-767. doi:10.1007/s13246-024-01404-1.
|
[17] |
Yang Y, Zhang Q. Multiview framework using a 3D residual network for pulmonary micronodule malignancy risk classification. Biomed Mater Eng, 2020, 31(4):253-267. doi:10.3233/BME-206005.
pmid: 32894237
|
[18] |
Yu X, Jin F, Luo H, et al. Gross Tumor Volume Segmentation for Stage Ⅲ NSCLC Radiotherapy Using 3D ResSE-Unet. Technol Cancer Res Treat, 2022, 21:15330338221090847. doi:10.1177/15330338221090847.
|
[19] |
Wu P, Cui Z, Gan Z, et al. Three-Dimensional ResNeXt Network Using Feature Fusion and Label Smoothing for Hyperspectral Image Classification. Sensors (Basel), 2020, 20:1652. doi:10.3390/s20061652.
|