中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (1): 91-94.doi: 10.19982/j.issn.1000-6621.20210537
收稿日期:
2021-09-09
出版日期:
2022-01-10
发布日期:
2021-12-29
通信作者:
侯代伦
E-mail:hou.dl@mail.ccmu.edu.cn
基金资助:
Received:
2021-09-09
Online:
2022-01-10
Published:
2021-12-29
Contact:
HOU Dai-lun
E-mail:hou.dl@mail.ccmu.edu.cn
Supported by:
摘要:
肺结核的影像学形态往往呈多样性,因此,如何鉴别诊断肺结核一直以来是常规影像学研究的重点与难点。近年来,深度学习在辅助影像诊断方面有了飞快发展。深度学习擅长识别大量图像数据中的复杂模式,可大大提高医师的诊断准确性及工作效率。笔者将对深度学习在影像诊断及肺结核影像诊断中的应用、不足及展望进行综述。
中图分类号:
吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用[J]. 中国防痨杂志, 2022, 44(1): 91-94. doi: 10.19982/j.issn.1000-6621.20210537
WU Jian, HOU Dai-lun. Application of deep learning in pulmonary tuberculosis imaging diagnosis[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 91-94. doi: 10.19982/j.issn.1000-6621.20210537
[1] |
周新华. 从建立影像分析思路入手把握结核病影像诊断与鉴别要点. 中国防痨杂志, 2020, 42(3):191-194. doi: 10.3969/j.issn.1000-6621.2020.03.002.
doi: 10.3969/j.issn.1000-6621.2020.03.002 |
[2] |
金征宇. 人工智能医学影像应用:现实与挑战. 放射学实践, 2018, 33(10):989-991. doi: 10.13609/j.cnki.1000-0313.2018.10.001.
doi: 10.13609/j.cnki.1000-0313.2018.10.001 |
[3] |
Singh R, Kalra MK, Nitiwarangkul C, et al. Deep learning in chest radiography: Detection of findings and presence of change. PLoS One, 2018, 13(10):e0204155. doi: 10.1371/journal.pone.0204155.
doi: 10.1371/journal.pone.0204155 |
[4] |
Mohan CSM. Artificial intelligence in radiology—Are we treating the image or the patient? Indian J Radiol Imaging, 2018, 28(2):137-139. doi: 10.4103/ijri.IJRI_256_18.
doi: 10.4103/ijri.IJRI_256_18 URL |
[5] |
Marton F, Säljö R. On qualitative differences in learning: Ⅰ—outcome and process. Br J Educ Psychol, 1976, 46(1):4-11. doi: 10.1111/j.2044-8279.1976.tb02980.x.
doi: 10.1111/j.2044-8279.1976.tb02980.x URL |
[6] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791.
doi: 10.1109/5.726791 |
[7] |
Zhang D, Wang J, Noble JH, et al. HeadLocNet: Deep convolutional neural networks for accurate classification and multi-landmark localization of head CTs. Med Image Anal, 2020, 61:101659. doi: 10.1016/j.media.2020.101659.
doi: 10.1016/j.media.2020.101659 |
[8] |
Wang H, Song Z, Li W, et al. A Hybrid Network for Large-Scale Action Recognition from RGB and Depth Modalities. Sensors (Basel), 2020, 20(11):3305. doi: 10.3390/s20113305.
doi: 10.3390/s20113305 URL |
[9] |
Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process, 2017, 26(10):4843-4855. doi: 10.1109/TIP.2017.2725580.
doi: 10.1109/TIP.2017.2725580 URL |
[10] |
Shin M, Paik W, Kim B, et al. An IoT Platform with Monitoring Robot Applying CNN-Based Context-Aware Learning. Sensors (Basel), 2019, 19(11):2525. doi: 10.3390/s19112525.
doi: 10.3390/s19112525 URL |
[11] |
Cossu A, Carta A, Lomonaco V, et al. Continual learning for recurrent neural networks: An empirical evaluation. Neural Netw, 2021, 143:607-627. doi: 10.1016/j.neunet.2021.07.021.
doi: 10.1016/j.neunet.2021.07.021 URL |
[12] |
Nahid AA, Mehrabi MA, Kong Y. Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering. Biomed Res Int, 2018, 2018:2362018. doi: 10.1155/2018/2362108.
doi: 10.1155/2018/2362108 |
[13] |
Norman B, Pedoia V, Majumdar S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology, 2018, 288(1):177-185. doi: 10.1148/radiol.2018172322.
doi: 10.1148/radiol.2018172322 pmid: 29584598 |
[14] |
Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med Phys, 2019, 46(1):e1-e36. doi: 10.1002/mp.13264.
doi: 10.1002/mp.13264 URL |
[15] |
刘凯, 张荣国, 涂文婷, 等. 深度学习技术对胸部X线平片亚实性结节的检测效能初探. 中华放射学杂志, 2017, 51(12):918-921. doi: 10.3760/cma.j.issn.1005-1201.2017.12.006.
doi: 10.3760/cma.j.issn.1005-1201.2017.12.006 |
[16] |
Kooi T, van Ginneken BV, Karssemeijer N, et al. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys, 2017, 44(3):1017-1027. doi: 10.1002/mp.12110.
doi: 10.1002/mp.12110 URL |
[17] |
Li Y, Zhang Z, Dai C, et al. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis. Comput Biol Med, 2020, 123:103898. doi: 10.1016/j.compbiomed.2020.103898.
doi: 10.1016/j.compbiomed.2020.103898 |
[18] |
Ciompi F, de Hoop B, van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal, 2015, 26(1):195-202. doi: 10.1016/j.media.2015.08.001.
doi: 10.1016/j.media.2015.08.001 URL |
[19] |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10):1559-1567. doi: 10.1038/s41591-018-0177-5.
doi: 10.1038/s41591-018-0177-5 URL |
[20] |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10):879-887. doi: 10.1007/s00066-020-01625-9.
doi: 10.1007/s00066-020-01625-9 URL |
[21] |
El-Khatib H, Popescu D, Ichim L. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions. Sensors (Basel), 2020, 20(6):1753. doi: 10.3390/s20061753.
doi: 10.3390/s20061753 URL |
[22] |
Alemi Koohbanani N, Jahanifar M, Zamani Tajadin N, et al. NuClick: A deep learning framework for interactive segmentation of microscopic images. Med Image Anal, 2020, 65:101771. doi: 10.1016/j.media.2020.101771.
doi: 10.1016/j.media.2020.101771 |
[23] |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res, 2018, 67:1-29. doi: 10.1016/j.preteyeres.2018.07.004.
doi: S1350-9462(18)30011-9 pmid: 30076935 |
[24] |
Shin HC, Roth HR, Gao M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging, 2016, 35(5):1285-1298. doi: 10.1109/TMI.2016.2528162.
doi: 10.1109/TMI.2016.2528162 URL |
[25] |
Maduskar P, Muyoyeta M, Ayles H, et al. Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis, 2013, 17(12):1613-1620. doi: 10.5588/ijtld.13.0325.
doi: 10.5588/ijtld.13.0325 pmid: 24200278 |
[26] |
Murphy K, Habib SS, Zaidi SMA, et al. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci Rep, 2020, 10(1):5492. doi: 10.1038/s41598-020-62148-y.
doi: 10.1038/s41598-020-62148-y URL |
[27] |
Koesoemadinata RC, Kranzer K, Livia R, et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. Int J Tuberc Lung Dis, 2018, 22(9):1088-1094. doi: 10.5588/ijtld.17.0827.
doi: 10.5588/ijtld.17.0827 pmid: 30092877 |
[28] |
Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017, 284(2):574-582. doi: 10.1148/radiol.2017162326.
doi: 10.1148/radiol.2017162326 pmid: 28436741 |
[29] |
Hwang EJ, Park S, Jin KN, et al. Development and Validation of a Deep Learning-based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis, 2019, 69(5):739-747. doi: 10.1093/cid/ciy967.
doi: 10.1093/cid/ciy967 pmid: 30418527 |
[30] |
曹盼, 王斐, 刘哲, 等. 特征金字塔网络在胸部X线摄影图像上筛检肺结核的价值. 中国防痨杂志, 2019, 41(3):288-293. doi: 10.3969/j.issn.1000-6621.2019.03.009.
doi: 10.3969/j.issn.1000-6621.2019.03.009 |
[31] |
Khan FA, Majidulla A, Tavaziva G, et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health, 2020, 2(11):e573-e581. doi: 10.1016/S2589-7500(20)30221-1.
doi: 10.1016/S2589-7500(20)30221-1 |
[32] |
Huang X, Lei Q, Xie T, et al. Deep Transfer Convolutional Neural Network and Extreme Learning Machine for Lung Nodule Diagnosis on CT images. Knowledge-Based Systems, 2020, 204:106230. doi: 10.1016/j.knosys.2020.106230.
doi: 10.1016/j.knosys.2020.106230 |
[33] |
Ma L, Wang Y, Guo L, et al. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. J Xray Sci Technol, 2020, 28(5):939-951. doi: 10.3233/XST-200662.
doi: 10.3233/XST-200662 |
[34] |
吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探. 中华结核和呼吸杂志, 2021, 44(5):450-455. doi: 10.3760/cma.j.cn112147-20210108-00026.
doi: 10.3760/cma.j.cn112147-20210108-00026 |
[35] |
Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imag, 2021, 16:1-14. doi: 10.1007/s00259-021-05432-x.
doi: 10.1007/s00259-021-05432-x |
[36] |
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019, 16(11):703-715. doi: 10.1038/s41571-019-0252-y.
doi: 10.1038/s41571-019-0252-y URL |
[37] |
Loh BCS, Then PHH. Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions. Mhealth, 2017, 3:45. doi: 10.21037/mhealth.2017.09.01.
doi: 10.21037/mhealth.2017.09.01 URL |
[1] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[2] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[3] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[4] | 段鸿飞, 陶勇. 《眼内结核诊断规范》团体标准解读[J]. 中国防痨杂志, 2025, 47(3): 258-261. |
[5] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[6] | 贾辉, 景辉, 凌晓洁, 王燕, 李学政. GeneXpert MTB/RIF Ultra检测痰液样本对新发肺结核的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 298-304. |
[7] | 石玉如, 谷德健, 吴静, 刘婷, 秦令寒, 岳莉, 戚应杰. 靶向捕获测序技术和宏基因组二代测序技术检测肺泡灌洗液中结核分枝杆菌的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 305-311. |
[8] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[9] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[10] | 邱勇, 权卓, 屈榕, 田发君, 李蒙, 王更生, 王娅, 郭明成, 高谦. 县级实验室结核病检测方法的诊断效果分析: 一项基于真实世界数据的回顾性研究[J]. 中国防痨杂志, 2025, 47(2): 181-188. |
[11] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[12] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[13] | 赵悦, 王昊然, 程美锦, 王伟, 梁瑞霞, 黄海荣. 涂片阳性/Xpert阴性结果早期预测临床标本中存在非结核分枝杆菌的可靠性[J]. 中国防痨杂志, 2025, 47(1): 61-65. |
[14] | 解慧, 吴娇娇. 痰涂片结核分枝杆菌检查和抗原胶体金法检验应用于肺结核的价值[J]. 中国防痨杂志, 2024, 46(S2): 32-34. |
[15] | 朱元子, 焦荣红. 肿瘤标志物和细胞因子联合检测对早期肺腺癌的诊断价值[J]. 中国防痨杂志, 2024, 46(S2): 62-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||