中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (5): 535-545.doi: 10.19982/j.issn.1000-6621.20250070
中国防痨协会结核病基础专业分会
收稿日期:
2025-02-28
出版日期:
2025-05-10
发布日期:
2025-04-29
基金资助:
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association
Received:
2025-02-28
Online:
2025-05-10
Published:
2025-04-29
Supported by:
摘要:
耐药结核病长期以来一直是全球公共卫生领域的严峻挑战,目前仅依赖二分类表型药物敏感性试验(简称“表型药敏试验”)和基因型药敏试验难以为患者提供精准有效的治疗方案。基于微孔板的微量肉汤稀释法药敏试验不仅能够一次性涵盖多种药物和多个浓度,还可以为临床提供量化的耐药信息,因此,受到越来越多的关注。为了合理、科学、规范地使用微量肉汤稀释法药敏试验,中国防痨协会结核病基础专业分会组织多位相关领域专家,针对该药敏方法的技术特点、应用价值、标准化操作、结果解读,以及实际操作中的注意事项等问题制定了本共识,并提出了12条推荐意见,旨在为结核病防治相关临床及实验室工作人员提供统一的指导原则。
中图分类号:
中国防痨协会结核病基础专业分会. 中国结核分枝杆菌微量肉汤稀释法药物敏感性试验标准化专家共识[J]. 中国防痨杂志, 2025, 47(5): 535-545. doi: 10.19982/j.issn.1000-6621.20250070
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China[J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. doi: 10.19982/j.issn.1000-6621.20250070
表1
结核分枝杆菌微量肉汤稀释法推荐药物检测种类、优先顺序和浓度
药物中文名 | 药物英文名 | 药物英文缩写 | 推荐级别 | 推荐浓度范围(mg/L) |
---|---|---|---|---|
利福平 | Rifampicin | RIF | 最高 | 0.016~2 |
异烟肼 | Isoniazid | INH | 最高 | 0.016~2 |
左氧氟沙星 | Levofloxacin | LFX | 最高 | 0.06~8 |
莫西沙星 | Moxifloxacin | MFX | 最高a | - |
贝达喹啉 | Bedaquiline | BDQ | 最高 | 0.008~1 |
利奈唑胺 | Linezolid | LZD | 最高 | 0.06~4 |
氯法齐明 | Clofazimine | CFZ | 最高 | 0.008~1 |
德拉马尼 | Delamanid | DLM | 最高 | 0.002~0.25 |
普托马尼 | Pretomanid | PMD | 最高b | - |
吡嗪酰胺 | Pyrazinamide | PZA | 最高c | - |
乙胺丁醇 | Ethambutol | EMB | 较高 | 0.125~8 |
D-环丝氨酸 | D-cycloserine | DCS | 较高 | 1~64 |
特立齐酮 | Terizidone | TZD | 较高d | - |
乙硫异烟胺 | Ethionamide | ETO | 较高 | 0.125~16 |
丙硫异烟胺 | Prothionamide | PTO | 较高e | - |
卡那霉素 | Kanamycin | KAN | 一般f | 0.125~16 |
阿米卡星 | Amikacin | AMK | 一般g | - |
链霉素 | Streptomycin | STR | 不推荐 | - |
卷曲霉素 | Capreomycin | CPM | 不推荐 | - |
对氨基水杨酸 | Para-aminosalicylic acid | PAS | 不推荐h | - |
利福喷丁 | Rifapentine | RFT | 不推荐i | - |
利福布汀 | Rifabutin | RFB | 不推荐 | - |
氧氟沙星 | Ofloxacin | OFX | 不推荐j | - |
表2
结核分枝杆菌微量肉汤稀释法药敏试验不同机构推荐ECOFF值及本共识临时推荐折点汇总
药物名称 (缩写) | WHO推荐ECOFF 值(mg/L)[ | CLSI推荐折点 (mg/L)[ | EUCAST推荐 折点(mg/L)[ | CRyPTIC Consortium 推荐ECOFF值 (UKMYC6/5)(mg/L)[ | 本共识拟临时 推荐折点(mg/L) |
---|---|---|---|---|---|
利福平(RIF) | 0.5 | 0.5 | - | 0.5 | 0.5 |
异烟肼(INH) | 0.125 | 0.12 | - | 0.1(0.2/0.4为临界MIC) | 0.125 |
左氧氟沙星(LFX) | 1 | - | - | 1 | 1 |
莫西沙星(MFX) | - | - | - | 1 | 0.5 |
贝达喹啉(BDQ) | 0.125(或0.25) | - | 0.25 | 0.25 | 0.25 |
利奈唑胺(LZD) | 1.0(或2.0) | - | - | 1 | 1 |
氯法齐明(CFZ) | 0.25(或0.5) | - | - | 0.25 | 0.25 |
德拉马尼(DLM) | 0.06(或0.125) | - | 0.06 | 0.12 | 0.125 |
普托马尼(PTM) | - | - | 2 | - | 2 |
乙胺丁醇(EMB) | 4 | ≤2.0为敏感,4.0为 不确定,≥8.0为耐药 | - | 4(4为临界MIC) | ≤2.0为敏感,4.0为不 确定结果,≥8.0为耐药 |
D-环丝氨酸(DCS) | 32(或64) | - | - | - | 32 |
乙硫异烟胺(ETO) | 4 | - | - | 4(4为临界MIC) | 4 |
卡那霉素(KAN) | 4 | - | - | 4 | 4 |
阿米卡星(AMK) | - | - | - | 1 | 1 |
链霉素(STR) | - | - | - | - | 2 |
卷曲霉素(CPM) | - | - | - | - | - |
对氨基水杨酸(PAS) | - | - | - | - | 2 |
利福布汀(RFB) | - | - | - | 0.12 | - |
利福喷丁(RFT) | - | - | - | - | - |
氧氟沙星(OFX) | - | - | - | - | 2 |
表3
微量肉汤稀释法药敏试验检测结核分枝杆菌标准株H37Rv ATCC?27294的MIC值质控范围
药物名称(缩写) | MIC值质控范围(mg/L)a | ||
---|---|---|---|
CLSI-冻干药粉微孔板[ | CLSI-冷冻微孔板[ | 其他研究 | |
利福平(RIF) | ≤0.12 | 0.06~0.25 | 0.03~0.25[ |
异烟肼(INH) | ≤0.12 | 0.03~0.12 | 0.03~0.25[ |
左氧氟沙星(LFX) | - | 0.12~1 | 0.12~1[ |
莫西沙星(MFX) | ≤0.5 | 0.06~0.5 | 0.06~0.5[ |
贝达喹啉(BDQ) | - | 0.015~0.06 | 0.015~0.06[ |
利奈唑胺(LZD) | - | 0.25~2 | 0.25~2[ |
氯法齐明(CFZ) | - | 0.03~0.25 | 0.03~0.25[ |
德拉马尼(DLM) | - | - | 0.002~0.016[ |
普托马尼(PMD) | - | - | - |
乙胺丁醇(EMB) | ≤0.5~2 | 0.25~2 | 0.25~2[ |
D-环丝氨酸(DCS) | - | - | 4~16[ |
特立齐酮(TZD) | - | - | - |
乙硫异烟胺(ETO) | 0.6~2.5 | - | - |
卡那霉素(KAN) | 1.2~5 | 0.25~2 | 0.25~2[ |
阿米卡星(AMK) | 0.25~1 | 0.25~2 | 0.25~2[ |
链霉素(STR) | 0.5~2 | - | - |
卷曲霉素(CPM) | - | 0.5~4 | 0.5~4[ |
对氨基水杨酸(PAS) | ≤0.5 | - | - |
利福喷丁(RFT) | - | - | - |
利福布汀(RFB) | ≤0.12 | - | - |
氧氟沙星(OFX) | 0.5~2 | 0.25~2 | 0.25~2[ |
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[3] | Tan Y, Hu Z, Zhao Y, et al. The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resis-tance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol, 2012, 50(1): 81-85. doi:10.1128/JCM.05092-11. |
[4] | Xia H, Zheng Y, Zhao B, et al. Assessment of a 96-Well Plate Assay of Quantitative Drug Susceptibility Testing for Mycobacterium Tuberculosis Complex in China. PLoS One, 2017, 12(1): e0169413. doi:10.1371/journal.pone.0169413. |
[5] | World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2022. |
[6] | European Committee on Antimicrobial Susceptibility Testing. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing[EB/OL].[2025-02-26]. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Area_of_Technical_Uncertainty_-_guidance_2019-1.pdf. |
[7] | Köser CU, Georghiou SB, Schön T, et al. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol, 2021, 59(4): e02328-20. doi:10.1128/JCM.02328-20. |
[8] |
Maurer FP, Courvalin P, Böttger EC, et al. Integrating forecast probabilities in antibiograms: a way to guide antimicrobial prescriptions more reliably?. J Clin Microbiol, 2014, 52(10):3674-3684. doi:10.1128/JCM.01645-14.
pmid: 25100821 |
[9] |
Valsesia G, Hombach M, Maurer FP, et al. The Resistant-Population Cutoff (RCOFF): a New Concept for Improved Characterization of Antimicrobial Susceptibility Patterns of Non-Wild-Type Bacterial Populations. J Clin Microbiol, 2015, 53(6):1806-1811. doi:10.1128/JCM.03505-14.
pmid: 25762769 |
[10] |
Valsesia G, Roos M, Böttger EC, et al. A statistical approach for determination of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol, 2015, 53(6):1812-1822. doi:10.1128/JCM.03506-14.
pmid: 25762772 |
[11] |
Blöchliger N, Keller PM, Böttger EC, et al. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities. J Antimicrob Chemother, 2017, 72(9):2553-2561. doi:10.1093/jac/dkx196.
pmid: 28859448 |
[12] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
pmid: 34615575 |
[13] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi:10.1093/jac/dkaa136.
pmid: 32361756 |
[14] | CRyPTIC Consortium. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat Commun, 2024, 15(1):488. doi:10.1038/s41467-023-44325-5. |
[15] | Jouet A, Gaudin C, Badalato N, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J, 2021, 57(3): 2002338. doi:10.1183/13993003.02338-2020. |
[16] | Vargas R Jr, Freschi L, Spitaleri A, et al. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resis-tance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2021, 65(11): e0116421. doi:10.1128/AAC.01164-21. |
[17] |
Foongladda S, Banu S, Pholwat S, et al. Comparison of TaqMan Array Card and MYCOTBTM with conventional phenotypic susceptibility testing in MDR-TB. Int J Tuberc Lung Dis, 2016, 20(8):1105-1112. doi:10.5588/ijtld.15.0896.
pmid: 27393547 |
[18] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[19] |
Ismail NA, Ismail F, Joseph L, et al. Epidemiological cut-offs for Sensititre susceptibility testing of Mycobacterium tuberculosis: interpretive criteria cross validated with whole genome sequencing. Sci Rep, 2020, 10(1):1013. doi:10.1038/s41598-020-57992-x.
pmid: 31974497 |
[20] | Heysell SK, Moore JL, Peloquin CA, et al. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009—2014. Tuberc Respir Dis (Seoul), 2015, 78(2):78-84. doi:10.4046/trd.2015.78.2.78. |
[21] |
Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis, 2018, 18(12):1350-1359. doi:10.1016/S1473-3099(18)30496-1.
pmid: 30342828 |
[22] | Beckert P, Sanchez-Padilla E, Merker M, et al. MDR M.tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Med, 2020, 12(1):104. doi:10.1186/s13073-020-00793-8. |
[23] | 夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读. 中国防痨杂志, 2022, 44(7): 641-645. doi:10.19982/j.issn.1000-6621.20220187. |
[24] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[25] | Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-drug microtitre plate containing bedaquiline and delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018, 62(9): e00344-18. doi:10.1128/AAC.00344-18. |
[26] | Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 2nd ed. Waynesboro, Virginia: Clinical and Laboratory Standards Institute, 2023. |
[27] | Schön T, Köser CU, Werngren J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex?. Clin Microbiol Infect, 2020, 26(11):1453-1455. doi:10.1016/j.cmi.2020.07.037. |
[28] | CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4): 2200239. doi:10.1183/13993003.00239-2022. |
[29] | 中华人民共和国国家卫生健康委员会. WS/T 807—2022 临床微生物培养、鉴定和药敏检测系统的性能验证. 2022-01-02. |
[30] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing of Selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. J Clin Microbiol, 2016, 54(12):2963-2968. doi:10.1128/JCM.01138-16.
pmid: 27654338 |
[31] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine Bedaquiline MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing. J Clin Microbiol, 2016, 54(12): 2956-2962. doi:10.1128/JCM.01123-16.
pmid: 27654337 |
[32] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTECTM MGITTM 960 system. J Antimicrob Chemother, 2016, 71(6): 1532-1539. doi:10.1093/jac/dkw044.
pmid: 27076101 |
[33] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (011-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[34] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (034-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[35] | World Health Organization. WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization, 2019. |
[36] | Clinical and Laboratory Standards Institute. CLSI M100:Performance Standards for Antimicrobial Susceptibility Testing (35th ed)[EB/OL]. [2025-02-26]. https://clsi.org/shop/standards/m100/. |
[37] | 中华人民共和国国家卫生健康委员会. 国家卫生健康委关于印发人间传染的病原微生物目录的通知. 国卫科教发〔2023〕24 号. 2023-08-18. |
[38] | 中华人民共和国国家卫生和计划生育委员会.WS 233—2017 病原微生物实验室生物安全通用准则. 2017-07-24. |
[39] | 中华人民共和国国家卫生健康委员会. 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定. 卫生部令第45号. 2005-12-28. |
[1] | 中国人民解放军总医院第八医学中心结核病医学部 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 泌尿系统结核的诊断与治疗专家共识[J]. 中国防痨杂志, 2025, 47(5): 546-558. |
[2] | 刘巧, 李忠奇, 竺丽梅, 陆伟. 中国结核病防治服务体系运行现状、问题与对策研究[J]. 中国防痨杂志, 2025, 47(5): 559-568. |
[3] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[4] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[5] | 中国防痨协会《中国防痨杂志》编辑委员会 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所 Inspire⁃CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
[6] | 张超, 于霞, 黄海荣, 刘伟, 刘涛. 七氟烷对结核分枝杆菌体外抑菌效果的评价[J]. 中国防痨杂志, 2025, 47(2): 158-163. |
[7] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[8] | 王健华, 史坤雄, 黄雅欣, 梁葵弟, 梁汉成. GeneXpert MTB/RIF对快速诊断肺结核及检测利福平耐药性的价值分析[J]. 中国防痨杂志, 2024, 46(S1): 94-96. |
[9] | 陈双双, 田丽丽, 王嫩寒, 杨新宇, 赵琰枫, 李传友, 代小伟. 17种抗生素对北京地区快速生长分枝杆菌体外抑菌效果分析[J]. 中国防痨杂志, 2024, 46(9): 1056-1062. |
[10] | 李杨, 孙峰, 张文宏. 结核病短程治疗研究:回顾与展望[J]. 中国防痨杂志, 2024, 46(9): 991-997. |
[11] | 李志丽, 刘宇红. 《世界卫生组织结核病整合指南模块6: 结核病及其共患病-HIV》解读[J]. 中国防痨杂志, 2024, 46(8): 869-873. |
[12] | 于兰, 陈双双, 王嫩寒, 田丽丽, 赵琰枫, 樊瑞芳, 刘海灿, 李传友, 代小伟. 利福平耐药结核分枝杆菌对氟喹诺酮类药物表型耐药与其基因突变的一致性研究[J]. 中国防痨杂志, 2024, 46(8): 942-950. |
[13] | 田宏晶, 张彦军, 邓强, 李军杰, 杨军, 刘鑫锋, 杜建强. 基于核因子κB受体活化因子配体信号通路激活破骨细胞治疗骨结核的研究进展[J]. 中国防痨杂志, 2024, 46(8): 971-975. |
[14] | 傅可言, 朱邦政, 叶健. 间质性肺疾病合并结核分枝杆菌感染的研究进展[J]. 中国防痨杂志, 2024, 46(7): 823-829. |
[15] | 刘桂珍, 邓国防. 《结核病政策指南制订过程中发现的证据和研究缺口(第2版)》解读——结核病相关共病[J]. 中国防痨杂志, 2024, 46(6): 618-624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||