| [1] |
Trajman A, Campbell JR, Kunor T, et al. Tuberculosis. Lancet, 2025, 405(10481):850-866. doi:10.1016/S0140-6736(24)02479-6.
pmid: 40057344
|
| [2] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
| [3] |
Ketchanji Mougang YC, Endale Mangamba LM, Capuano R, et al. On-Field Test of Tuberculosis Diagnosis through Exhaled Breath Analysis with a Gas Sensor Array. Biosensors (Basel), 2023, 13(5):570. doi:10.3390/bios13050570.
|
| [4] |
Li Y, Wei X, Zhou Y, et al. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst Nanoeng, 2023,9:129. doi:10.1038/s41378-023-00594-0.
|
| [5] |
Dragonieri S, Pennazza G, Carratu P, et al. Electronic Nose Technology in Respiratory Diseases. Lung, 2017, 195(2):157-165. doi:10.1007/s00408-017-9987-3.
pmid: 28238110
|
| [6] |
Saktiawati AMI, Putera DD, Setyauan A, et al. Diagnosis of tuberculosis through breath test: A systematic review. EBioMedicine, 2019, 46: 202-214. doi:10.1016/j.ebiom.2019.07.056.
pmid: 31401197
|
| [7] |
Bijker EM, Smith JP, Mchembere W, et al. Exhaled breath analysis: A promising triage test for tuberculosis in young children. Tuberculosis (Edinb), 2024, 149:102566. doi:10.1016/j.tube.2024.102566.
|
| [8] |
Sansone F, Tonacci A. Non-Invasive Diagnostic Approaches for Kidney Disease: The Role of Electronic Nose Systems. Sensors (Basel), 2024, 24(19):6475. doi:10.3390/s24196475.
|
| [9] |
Li Y, Yang K, He Z, et al. Can Electronic Nose Replace Human Nose?-An Investigation of E-Nose Sensor Responses to Volatile Compounds in Alcoholic Beverages. ACS Omega, 2023, 8(18):16356-16363. doi:10.1021/acsomega.3c01140.
pmid: 37179643
|
| [10] |
Day BA, Ahualli NI, Wilmer CE. Multipressure Sampling for Improving the Performance of MOF-based Electronic Noses. ACS Sens, 2024, 9(7):3531-3539. doi:10.1021/acssensors.4c00199.
|
| [11] |
Lu B, Fu L, Nie B, et al. A Novel Framework with High Diagnostic Sensitivity for Lung Cancer Detection by Electronic Nose. Sensors (Basel), 2019, 19(23):5333. doi:10.3390/s19235333.
|
| [12] |
Cho I, Lee K, Sim YC, et al. Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci Appl, 2023, 12(1):95. doi:10.1038/s41377-023-01120-7.
|
| [13] |
吴超玲, 邓国防, 付亮, 等. 呼出气挥发性有机物在肺部感染性疾病诊断中的研究进展. 中国防痨杂志, 2022, 44(5):505-511. doi:10.19982/j.issn.1000-6621.20210693.
|
| [14] |
van der Aart TJ, Visser M, van Londen M, et al. The smell of sepsis: Electronic nose measurements improve early recognition of sepsis in the ED. Am J Emerg Med, 2025, 88:126-133. doi:10.1016/j.ajem.2024.11.045.
pmid: 39615435
|
| [15] |
李慧文, 陈宏. 电子鼻技术在常见呼吸系统疾病中的应用研究进展. 国际呼吸杂志, 2023, 43(10):1124-1129. doi:10.3760/cma.j.cn131368-20220912-00803.
|
| [16] |
Ma TT, Chang Z, Zhang N, et al. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: a review. J Cancer Res Clin Oncol, 2024, 150(8):401. doi:10.1007/s00432-024-05925-w.
|
| [17] |
Coronel Teixeira R, Rodríguez M, Jiménez de Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J Infect, 2017, 75(5):441-447. doi:10.1016/j.jinf.2017.08.003.
pmid: 28804027
|
| [18] |
Chew N, Yun S, See KC. Diagnostic Accuracy of Breath Tests to Detect Pulmonary Tuberculosis: A Systematic Review. Lung, 2025, 203(1):26. doi:10.1007/s00408-024-00779-y.
pmid: 39841224
|
| [19] |
Lee JM, Lee Y, Devaraj V, et al. Investigation of colorimetric biosensor array based on programable surface chemistry of M13 bacteriophage towards artificial nose for volatile organic compound detection: From basic properties of the biosensor to practical application. Biosens Bioelectron, 2021, 188:113339. doi:10.1016/j.bios.2021.113339.
|
| [20] |
Tong S, Liu R, Wang W, et al. Synergistic effect of ultrahigh pressure and allicin on gel properties, flavor characteristics, and myosin structure of the obturator muscle of the scallop (Patinopecten yessoensis). J Food Sci, 2023, 88(7):3007-3021. doi:10.1111/1750-3841.16594.
|
| [21] |
Coronel Teixeira R, IJdema D, Gómez C, et al. The electronic nose as a rule-out test for tuberculosis in an indigenous population. J Intern Med, 2021, 290(2):386-391. doi:10.1111/joim.13281.
pmid: 33720468
|
| [22] |
Saktiawati AMI, Triyana K, Wahyuningtias SD, et al. eNose-TB: A trial study protocol of electronic nose for tuberculosis screening in Indonesia. PLoS One, 2021, 16(4):e0249689. doi:10.1371/journal.pone.0249689.
|
| [23] |
Zhai Z, Liu Y, Li C, et al. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. Sensors (Basel), 2024, 24(15):4806. doi:10.3390/s24154806.
|
| [24] |
de Jesús Beleño-Sáenz K, Cáceres-Tarazona JM, Nol P, et al. Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System. Sensors (Basel), 2021, 21(2):584. doi:10.3390/s21020584.
|
| [25] |
Poornima E, Chandra E, Rajendran P, et al. Stomach cancer identification based on exhaled breath analysis: a review. J Breath Res, 2025, 19(2). doi:10.1088/1752-7163/adc979.
|
| [26] |
Jafari C, Olaru ID, Daduna F, et al. Rapid Diagnosis of Recurrent Paucibacillary Tuberculosis. Pathog Immun, 2023, 7(2):189-202. doi:10.20411/pai.v7i2.565.
|
| [27] |
Coronel Teixeira R, Gómez L, González E, et al. The accuracy of an electronic nose to diagnose tuberculosis in patients referred to an expert centre. PLoS One, 2023, 18(2):e0276045. doi:10.1371/journal.pone.0276045.
|