[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. doi:10.3322/caac.21834.
|
[2] |
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018, 18(7): 407-418. doi:10.1038/s41568-018-0007-6.
pmid: 29692415
|
[3] |
Yan HHN, Chan AS, Lai FP, et al. Organoid cultures for cancer modeling. Cell Stem Cell, 2023, 30(7): 917-937. doi:10.1016/j.stem.2023.05.012.
pmid: 37315564
|
[4] |
Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med, 2023, 4(2):100911. doi:10.1016/j.xcrm.2022.100911.
|
[5] |
Cabrera-Sanchez J, Cuba V, Vega V, et al. Lung cancer occurrence after an episode of tuberculosis: a systematic review and meta-analysis. Eur Respir Rev, 2022, 31(165):220025. doi:10.1183/16000617.0025-2022.
|
[6] |
Iakobachvili N, Leon-Icaza SA, Knoops K, et al. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol, 2022, 117(3): 682-692. doi:10.1111/mmi.14824.
|
[7] |
Thorel L, Perréard M, Florent R, et al. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med, 2024, 56(7): 1531-1551. doi:10.1038/s12276-024-01272-5.
|
[8] |
Amini M, Benson JD. Technologies for Vitrification Based Cryopreservation. Bioengineering (Basel), 2023, 10(5):508. doi:10.3390/bioengineering10050508.
|
[9] |
Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Transplant, 2018, 23(3): 353-360. doi:10.1097/MOT.0000000000000534.
|
[10] |
Casciani V, Monseur B, Cimadomo D, et al. Oocyte and embryo cryopreservation in assisted reproductive technology: past achievements and current challenges. Fertil Steril, 2023, 120(3 Pt 1): 506-520. doi:10.1016/j.fertnstert.2023.06.005.
|
[11] |
Shi R, Radulovich N, Ng C, et al. Organoid Cultures as Preclinical Models of Non-Small Cell Lung Cancer. Clin Cancer Res, 2020, 26(5): 1162-1174. doi:10.1158/1078-0432.CCR-19-1376.
pmid: 31694835
|
[12] |
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J, 2019, 38(4): e100300. doi:10.15252/embj.2018100300.
|
[13] |
Zhou CQ, Mai QY, Li T, et al. Cryopreservation of human embryonic stem cells by vitrification. Chin Med J (Engl), 2004, 117(7): 1050-1055.
|
[14] |
Zhao H, Sun Z, Zhang L, et al. A novel in-situ fixation and embedding method improves lung cancer organoid histopathology. Cell Organoid, 2025. doi:10.26599/CO.2025.9410016.
|
[15] |
Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature, 1985, 313(6003): 573-575. doi:10.1038/313573a0.
|
[16] |
Aye M, Di Giorgio C, De Mo M, et al. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem Toxicol, 2010, 48(7): 1905-1912. doi:10.1016/j.fct.2010.04.032.
pmid: 20433889
|
[17] |
Chang CC, Shapiro DB, Nagy ZP. The effects of vitrification on oocyte quality. Biol Reprod, 2022, 106(2): 316-327. doi:10.1093/biolre/ioab239.
|
[18] |
Reyes Palomares A, Rodriguez-Wallberg KA. Update on the Epigenomic Implication of Embryo Cryopreservation Methods Applied in Assisted Reproductive Technologies With Potential Long-Term Health Effects. Front Cell Dev Biol, 2022, 10: 881550. doi:10.3389/fcell.2022.881550.
|