[1] |
Weis WI, Kobilka BK. The Molecular Basis of G Protein-Coupled Receptor Activation. Annu Rev Biochem, 2018, 87: 897-919. doi:10.1146/annurev-biochem-060614-033910.
pmid: 29925258
|
[2] |
Elkington PT, Emerson JE, Lopez-Pascua LD, et al. Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p 38 MAPK switch. J Immunol, 2005, 175(8):5333-5340. doi:10.4049/jimmunol.175.8.5333.
pmid: 16210639
|
[3] |
Dixon RA, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature, 1986, 321(6065):75-79. doi:10.1038/321075a0.
|
[4] |
Sojka AC, Brennan KM, Maizels ET, et al. The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research. J Biocommun, 2017, 41(1):e6. doi:10.5210/jbc.v41i1.7309.
pmid: 36405408
|
[5] |
Alexander SPH, Christopoulos A, Davenport AP, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol, 2019, 176 Suppl 1(Suppl 1): S21-S141. doi:10.1111/bph.14748.
|
[6] |
Crilly SE, Puthenveedu MA. Compartmentalized GPCR Signaling from Intracellular Membranes. J Membr Biol, 2021, 254(3):259-271. doi:10.1007/s00232-020-00158-7.
|
[7] |
Miyano K, Sudo Y, Yokoyama A, et al. History of the G protein-coupled receptor (GPCR) assays from traditional to a state-of-the-art biosensor assay. J Pharmacol Sci, 2014, 126(4):302-309. doi:10.1254/jphs.14R13CP.
pmid: 25421710
|
[8] |
Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol, 2022,13:747799. doi:10.3389/fimmu.2022.747799.
|
[9] |
王晓蕾. 结核病感染免疫相关因子IL-10的表达调控及MCP-1基因多态性的研究. 济南:山东大学, 2018.
|
[10] |
Peters W, Scott HM, Chambers HF, et al. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2001, 98(14):7958-7963. doi:10.1073/pnas.131207398.
|
[11] |
Møller AS, Øvstebø R, Westvik AB, et al. Effects of bacterial cell wall components (PAMPs) on the expression of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and the chemokine receptor CCR2 by purified human blood monocytes. J Endotoxin Res, 2003, 9(6):349-360. doi:10.1179/096805103225002791.
|
[12] |
Arias MA, Pantoja AE, Jaramillo G, et al. Chemokine receptor expression and modulation by Mycobacterium tuberculosis antigens on mononuclear cells from human lymphoid tissues. Immunology, 2006, 118(2):171-184. doi:10.1111/j.1365-2567.2006.02352.x.
|
[13] |
Joosten SA, van Meijgaarden KE, Savage ND, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A, 2007, 104(19):8029-8034. doi:10.1073/pnas.0702257104.
|
[14] |
Wahl SM, Greenwell-Wild T, Peng G, et al. Co-infection with opportunistic pathogens promotes human immunodeficiency virus type 1 infection in macrophages. J Infect Dis, 1999,179 Suppl 3:S457-S460. doi:10.1086/314814.
|
[15] |
Novita BD, Tjahjono Y, Wijaya S, et al. Characterization of chemokine and cytokine expression pattern in tuberculous lymphadenitis patient. Front Immunol, 2022, 13: 983269. doi:10.3389/fimmu.2022.983269.
|
[16] |
Badewa AP, Quinton LJ, Shellito JE, et al. Chemokine receptor 5 and its ligands in the immune response to murine tuberculosis. Tuberculosis (Edinb), 2005, 85(3):185-195. doi:10.1016/j.tube.2004.10.003.
|
[17] |
Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses, 2021, 13(5): 735. doi:10.3390/v13050735.
|
[18] |
Wahl SM, Greenwell-Wild T, Peng G, et al. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression. Proc Natl Acad Sci U S A, 1998, 95(21):12574-12579. doi:10.1073/pnas.95.21.12574.
|
[19] |
Boro M, Balaji KN. CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2. J Immunol, 2017, 199(5):1660-1671. doi:10.4049/jimmunol.1700129.
pmid: 28739876
|
[20] |
Gonçalves AS, Appelberg R. The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol, 2002, 55(6): 585-591. doi:10.1046/j.1365-3083.2002.01097.x.
|
[21] |
Koper OM, Kamińska J, Sawicki K, et al. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med, 2018, 27(6):849-856. doi:10.17219/acem/68846.
pmid: 29893515
|
[22] |
Sommer F, Torraca V, Kamel SM, et al. Frontline Science: Antagonism between regular and atypical Cxcr 3 receptors regulates macrophage migration during infection and injury in zebrafish. J Leukoc Biol, 2020, 107(2):185-203. doi:10.1002/JLB.2HI0119-006R.
|
[23] |
Sun H, Fan J, Shang X, et al. Study on the relationship between CXCR3 and its ligands and tubal tuberculosis. Life Sci, 2021,272:119047. doi:10.1016/j.lfs.2021.119047.
|
[24] |
Juarez J, Bendall L. SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol, 2004, 19(1):299-309. doi:10.14670/HH-19.299.
pmid: 14702198
|
[25] |
Cowley S. The biology of HIV infection. Lepr Rev, 2001, 72(2):212-220. doi:10.5935/0305-7518.20010028.
|
[26] |
Hoshino Y, Tse DB, Rochford G, et al. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages. J Immunol, 2004, 172(10):6251-6258. doi:10.4049/jimmunol.172.10.6251.
pmid: 15128813
|
[27] |
Torraca V, Tulotta C, Snaar-Jagalska BE, et al. The chemokine receptor CXCR4 promotes granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. Sci Rep, 2017,7:45061. doi:10.1038/srep45061.
|
[28] |
Gopal R, Rangel-Moreno J, Slight S, et al. Interleukin-17-dependent CXCL 13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 2013, 6(5):972-984. doi:10.1038/mi.2012.135.
pmid: 23299616
|
[29] |
Zhang Y, Li S, Liu Q, et al. Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1. Inflammation, 2020, 43(2):487-506. doi:10.1007/s10753-019-01132-9.
|
[30] |
Hall JD, Kurtz SL, Rigel NW, et al. The impact of chemokine receptor CX3CR1 deficiency during respiratory infections with Mycobacterium tuberculosis or Francisella tularensis. Clin Exp Immunol, 2009, 156(2):278-284. doi:10.1111/j.1365-2249.2009.03882.x.
|
[31] |
Vance J, Santos A, Sadofsky L, et al. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung, 2019, 197(1):89-94. doi:10.1007/s00408-018-0181-z.
pmid: 30474709
|
[32] |
Bo H, Moure UAE, Yang Y, et al. Mycobacterium tuberculosis-macrophage interaction: Molecular updates. Front Cell Infect Microbiol, 2023,13:1062963. doi:10.3389/fcimb.2023.1062963.
|
[33] |
Recio C, Lucy D, Purvis GSD, et al. Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages. Front Immunol, 2018,9:1419. doi:10.3389/fimmu.2018.01419.
|
[34] |
Peterson PK, Gekker G, Hu S, et al. Morphine stimulates phagocytosis of Mycobacterium tuberculosis by human microglial cells: involvement of a G protein-coupled opiate receptor. Adv Neuroimmunol, 1995, 5(3):299-309. doi:10.1016/0960-5428(95)00020-3.
pmid: 8748073
|
[35] |
Lee HJ, Ko HJ, Song DK, et al. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A-Phosphatidylinositol 3 Kinase-p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages. Front Immunol, 2018,9:920. doi:10.3389/fimmu.2018.00920.
|
[36] |
Santos AA Jr, Rodrigues-Junior V, Zanin RF, et al. Implication of purinergic P2X7 receptor in M.tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology, 2013, 218(8):1104-1112. doi:10.1016/j.imbio.2013.03.003.
pmid: 23583008
|
[37] |
Soares-Bezerra RJ, Pinho RT, Bisaggio Rda C, et al. The Search for New Agonists to P2X7R for Clinical Use: Tuberculosis as a Possible Target. Cell Physiol Biochem, 2015, 37(2):409-418. doi:10.1159/000430364.
pmid: 26314826
|
[38] |
Humphreys BD, Rice J, Kertesy SB, et al. Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem, 2000, 275(35):26792-26798. doi:10.1074/jbc.M002770200.
pmid: 10854431
|
[39] |
Kusner DJ, Barton JA. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol, 2001, 167(6):3308-3315. doi:10.4049/jimmunol.167.6.3308.
pmid: 11544319
|
[40] |
Coutinho-Silva R, Stahl L, Raymond MN, et al. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity, 2003, 19(3):403-412. doi:10.1016/s1074-7613(03)00235-8.
pmid: 14499115
|
[41] |
Amaral EP, Ribeiro SC, Lanes VR, et al. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog, 2014, 10(7):e1004188. doi:10.1371/journal.ppat.1004188.
|
[42] |
Di Liberto D, Locati M, Caccamo N, et al. Role of the chemokine decoy receptor D 6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J Exp Med, 2008, 205(9):2075-2084. doi:10.1084/jem.20070608.
|