[1] |
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023.
|
[2] |
Dutau G. The history of tuberculosis. Arch Pediatr, 2005, 12 Suppl 2: S88-95. doi:10.1016/s0929-693x(05)80022-3.
|
[3] |
Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect, 1997, 119(2): 183-201. doi:10.1017/s0950268897007917.
pmid: 9363017
|
[4] |
中国防痨协会临床专业委员会. 结核病临床诊治进展年度报告(2012年)(第一部分结核病临床诊断). 中国防痨杂志, 2013, 35(6): 405-426.
|
[5] |
World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Policy update. Geneva: World Health Organization, 2020.
|
[6] |
World Health Organization. WHO meeting report of a technical expert consultation:non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization, 2017.
|
[7] |
World Health Organization. High priority target product profiles for new tuberculosis diagnostics:report of a consensus meeting. Geneva: World Health Organization, 2014.
|
[8] |
Hoang LT, Jain P, Pillay TD, et al. Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. Lancet Infect Dis, 2021, 21(3): 366-375. doi:10.1016/s1473-3099(20)30928-2.
pmid: 33508221
|
[9] |
Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4): e1002786. doi:10.1371/journal.pmed.1002786.
|
[10] |
Sutherland JS, van der Spuy G, Gindeh A, et al. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis, 2022, 74(12): 2136-2141. doi:10.1093/cid/ciab839.
|
[11] |
Chen L, Hua J, He X. Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. Dis Markers, 2022, 2022: 2090560. doi:10.1155/2022/2090560.
|
[12] |
Perumal P, Abdullatif MB, Garlant HN, et al. Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Front Immunol, 2020, 11: 612564. doi:10.3389/fimmu.2020.612564.
|
[13] |
Zhang X, Xu H, Li C, et al. Up-regulated SAMD9L modulated by TLR2 and HIF-1α as a promising biomarker in tuberculosis. J Cell Mol Med, 2022, 26(10): 2935-2946. doi:10.1111/jcmm.17307.
|
[14] |
Francisco NM, Fang YM, Ding L, et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect, 2017, 75(6): 499-510. doi:10.1016/j.jinf.2017.09.012.
pmid: 28941629
|
[15] |
Warsinske HC, Rao AM, Moreira FMF, et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open, 2018, 1(6): e183779. doi:10.1001/jamanetworkopen.2018.3779.
|
[16] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224. doi:10.1016/s2213-2600(16)00048-5.
pmid: 26907218
|
[17] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断,.2017-11-09.
|
[18] |
中华医学会结核病学分会, 《中华结核和呼吸杂志》编辑委员会. γ-干扰素释放试验在中国应用的建议. 中华结核和呼吸杂志, 2014, 37(10): 744-747. doi:10.3760/cma.j.issn.1001-0939.2014.10.011.
|
[19] |
Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1):e20. doi:10.1016/s2666-5247(22)00359-7.
|
[20] |
Das M, Lu J, Joseph M, et al. Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis. Curr Mol Med, 2012, 12(2): 113-125. doi:10.2174/156652412798889090.
pmid: 22280353
|
[21] |
Mahabeleshwar GH, Kawanami D, Sharma N, et al. The myeloid transcription factor KLF 2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity, 2011, 34(5): 715-728. doi:10.1016/j.immuni.2011.04.014.
pmid: 21565532
|
[22] |
Das H, Kumar A, Lin Z, et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A, 2006, 103(17): 6653-6658. doi:10.1073/pnas.0508235103.
|
[23] |
荆堂堂, 倪晋泽, 赵玉菲, 等. Krüppel样转录因子2的功能. 暨南大学学报(自然科学与医学版), 2018, 39(5): 376-384. doi:10.11778/j.jdxb.2018.05.002.
|
[24] |
Jha P, Das H. KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. Int J Mol Sci, 2017, 18(11): 2383. doi:10.3390/ijms18112383.
|
[25] |
Fujiwara Y, Hizukuri Y, Yamashiro K, et al. Guanylate-binding protein 5 is a marker of interferon-γ-induced classically activated macrophages. Clin Transl Immunology, 2016, 5(11): e111. doi:10.1038/cti.2016.59.
|
[26] |
Yao X, Liu W, Li X, et al. Whole blood GBP 5 protein levels in patients with and without active tuberculosis. BMC Infect Dis, 2022, 22(1): 328. doi:10.1186/s12879-022-07214-8.
|
[27] |
Laux da Costa L, Delcroix M, Dalla Costa ER, et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis (Edinb), 2015, 95(4): 421-425. doi:10.1016/j.tube.2015.04.008.
|
[28] |
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci, 2019, 20(3):678. doi:10.3390/ijms20030678.
|
[29] |
姚向阳, 邓晨希, 刘伟, 等. 4种转录组标志物用于活动性结核的诊断研究. 中国人兽共患病学报, 2022, 38(3): 210-216. doi:10.3969/j.issn.1002-2694.2022.00.004.
|
[30] |
周佳玉. KLF2、GBP5、DUSP3基因在活动性肺结核和潜伏结核感染者中的诊断价值. 青岛: 青岛大学, 2021.
|