[1] |
Wang P, Pradhan K, Zhong XB, et al. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B, 2016, 6(5): 384-392. doi:10.1016/j.apsb.2016.07.014.
pmid: 27709007
|
[2] |
Elder DP, Snodin D, Teasdale A. Control and analysis of hydrazine, hydrazides and hydrazones--genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products. J Pharm Biomed Anal, 2011, 54(5): 900-910. doi:10.1016/j.jpba.2010.11.007.
pmid: 21145684
|
[3] |
Smolenkov AD, Shpigun OA. Direct liquid chromatographic determination of hydrazines: a review. Talanta, 2012, 102: 93-100. doi:10.1016/j.talanta.2012.07.005.
pmid: 23182580
|
[4] |
Sun M, Bai L, Liu DQ. A generic approach for the determination of trace hydrazine in drug substances using in situ derivati-zation-headspace GC-MS. J Pharm Biomed Anal, 2009, 49(2): 529-533. doi:10.1016/j.jpba.2008.11.009.
|
[5] |
刘兵, 刘岩, 李斯琪, 等. 基于超高效液相色谱—质谱技术血浆神经酰胺含量分析. 临床军医杂志, 2022, 50(11): 1121-1124, 1128. doi:10.16680/j.1671-3826.2022.11.05.
|
[6] |
Isenberg SL, Carter MD, Crow BS, et al. Quantification of Hydrazine in Human Urine by HPLC-MS-MS. J Anal Toxicol, 2016, 40(4): 248-254. doi:10.1093/jat/bkw015.
pmid: 26977107
|
[7] |
Song L, Gao D, Li S, et al. Simultaneous quantitation of hydrazine and acetylhydrazine in human plasma by high performance liquid chromatography-tandem mass spectrometry after derivatization with p-tolualdehyde. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1063: 189-195. doi:10.1016/j.jchromb.2017.08.036.
pmid: 28881295
|
[8] |
Ky Anh N, My Tung P, Kim MJ, et al. Quantitative Analysis of Isoniazid and Its Four Primary Metabolites in Plasma of Tuberculosis Patients Using LC-MS/MS. Molecules, 2022, 27(23): 8607. doi:10.3390/molecules27238607.
|
[9] |
张亮, 冯枭, 林霏申, 等. 异烟肼血药浓度的影响因素分析. 药学与临床研究, 2018, 26(6): 413-416. doi:10.13664/j.cnki.pcr.2018.06.004.
|
[10] |
Staden DV, Haynes RK, Van der Kooy F, et al. Development of a HPLC Method for Analysis of a Combination of Clofazimine, Isoniazid, Pyrazinamide, and Rifampicin Incorporated into a Dermal Self-Double-Emulsifying Drug Delivery System. Methods Protoc, 2023, 6(6): 104. doi:10.3390/mps6060104.
|
[11] |
Maekawa M, Mano N. Cutting-edge LC-MS/MS applications in clinical mass spectrometry: Focusing on analysis of drugs and metabolites. Biomed Chromatogr, 2022, 36(5): e5347. doi:10.1002/bmc.5347.
|
[12] |
Zheng YZ, Wang S. Advances in antifungal drug measurement by liquid chromatography-mass spectrometry. Clin Chim Acta, 2019, 491: 132-145. doi:10.1016/j.cca.2019.01.023.
pmid: 30685359
|
[13] |
Zhang YV, Wei B, Zhu Y. et al. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory. Clin Lab Med, 2016, 36(4): 635-661. doi:10.1016/j.cll.2016.07.001.
pmid: 27842783
|
[14] |
Adaway JE, Keevil BG. Therapeutic drug monitoring and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2012, 883-884: 33-49. doi:10.1016/j.jchromb.2011.09.041.
|
[15] |
Pourmohamadi N, Pour Abdollah Toutkaboni M, Hayati Roodbari N, et al. Association of Cytochrome P450 2E1 and N-Acetyltransferase 2 Genotypes with Serum Isoniazid Level and Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Cross-Sectional Study. Iran J Med Sci, 2023, 48(5): 474-483. doi:10.30476/ijms.2023.96145.2765.
|
[16] |
Boelsterli UA, Lee KK. Mechanisms of isoniazid-induced idiosyncratic liver injury: emerging role of mitochondrial stress. J Gastroenterol Hepatol, 2014, 29(4): 678-687. doi:10.1111/jgh.12516.
|
[17] |
Brewer CT, Yang L, Edwards A, et al. The Isoniazid Metabo-lites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci, 2019, 168(1): 209-224. doi:10.1093/toxsci/kfy294.
|
[18] |
Song SH, Jun SH, Park KU, et al. Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratios by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom, 2007, 21(7): 1331-1338. doi:10.1002/rcm.2961.
|
[19] |
Mercier T, Desfontaine V, Cruchon S, et al. A battery of tandem mass spectrometry assays with stable isotope-dilution for the quantification of 15 anti-tuberculosis drugs and two metabolites in patients with susceptible-, multidrug-resistant- and extensively drug-resistant tuberculosis. J Chromatogr B Analyt Technol Biomed Life Sci, 2022, 1211: 123456. doi:10.1016/j.jchromb.2022.123456.
|
[20] |
Gao S, Wang Z, Xie X, et al. Rapid and sensitive method for simultaneous determination of first-line anti-tuberculosis drugs in human plasma by HPLC-MS/MS: Application to therapeutic drug monitoring. Tuberculosis (Edinb), 2018, 109: 28-34. doi:10.1016/j.tube.2017.11.012.
|
[21] |
Yilmaz E, Soylak M. Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium (Ⅲ/Ⅵ) in environmental samples. Talanta, 2016, 160: 680-685. doi:10.1016/j.talanta.2016.08.001.
pmid: 27591663
|
[22] |
Smith KA, Merrigan SD, Johnson-Davis KL. Selecting a Structural Analog as an Internal Standard for the Quantification of 6-Methylmercaptopurine by LC-MS/MS. J Appl Lab Med, 2018, 3(3): 384-396. doi:10.1373/jalm.2018.026187.
pmid: 33636909
|
[23] |
Anderson G, Vinnard C. Diagnostic Accuracy of Therapeutic Drug Monitoring During Tuberculosis Treatment. J Clin Pharmacol, 2022, 62(10): 1206-1214. doi:10.1002/jcph.2068.
|
[24] |
Verbeeck RK, Günther G, Kibuule D, et al. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol, 2016, 72(8): 905-916. doi:10.1007/s00228-016-2083-4.
pmid: 27305904
|