[1] |
Cowman S, van Ingen J, Griffith DE, et al. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J, 2019, 54(1): 1900250. doi:10.1183/13993003.00250-2019.
|
[2] |
Dahl VN, Molhave M, Floe A, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis, 2022, 125: 120-131. doi:10.1016/j.ijid.2022.10.013.
pmid: 36244600
|
[3] |
Griffith DE, Daley CL. Treatment of Mycobacterium abscessus Pulmonary Disease. Chest, 2022, 161(1): 64-75. doi:10.1016/j.chest.2021.07.035.
|
[4] |
van der Laan R, Snabilie A, Obradovic M. Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: innovations in drug development and delivery. Respir Res, 2022, 23(1): 376. doi:10.1186/s12931-022-02299-w.
|
[5] |
World Health Organization. Rapid communication: key changes to treatment of multidrug-and rifampicin-resistant tuberculosis (MDR/RR-TB). Geneva: World Health Organization, 2018.
|
[6] |
Ruth MM, Sangen JJN, Remmers K, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother, 2019, 74(4): 935-943. doi:10.1093/jac/dky526.
pmid: 30649327
|
[7] |
Litvinov V, Makarova M, Kudlay D, et al. In vitro activity of bedaquiline against Mycobacterium avium complex. J Med Microbiol, 2021, 70(10). doi:10.1099/jmm.0.001439.
|
[8] |
Pym AS, Diacon AH, Tang SJ, et al. Bedaquiline in the treatment of multidrug-and extensively drug-resistant tuberculosis. Eur Respir J, 2016, 47(2): 564-574. doi:10.1183/13993003.00724-2015.
|
[9] |
Zhang SJ, Yang Y, Sun WW, et al. Effectiveness and safety of bedaquiline-containing regimens for treatment on patients with refractory RR/MDR/XDR-tuberculosis: a retrospective cohort study in East China. BMC Infect Dis, 2022, 22(1): 715. doi:10.1186/s12879-022-07693-9.
|
[10] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis, 2020, 71(4): 905-913. doi:10.1093/cid/ciaa1125.
pmid: 32797222
|
[11] |
Svensson EM, Dosne AG, Karlsson MO. Population Pharmacokinetics of Bedaquiline and Metabolite M2 in Patients With Drug-Resistant Tuberculosis: The Effect of Time-Varying Weight and Albumin. CPT Pharmacometrics Syst Pharmacol, 2016, 5(12):682-691. doi:10.1002/psp4.12147.
|
[12] |
Gao M, Gao J, Xie L, et al. Early outcome and safety of bedaquiline-containing regimens for treatment of MDR-and XDR-TB in China: a multicentre study. Clin Microbiol Infect, 2021, 27(4): 597-602. doi:10.1016/j.cmi.2020.06.004.
|
[13] |
Yao R, Wang B, Fu L, et al. Sudapyridine (WX-081), a Novel Compound against Mycobacterium tuberculosis. Microbiol Spectr, 2022, 10(1): e0247721. doi:10.1128/spectrum.02477-21.
|
[14] |
Zhu R, Shang Y, Chen S, et al. In Vitro Activity of the Sudapyridine (WX-081) against Non-Tuberculous Mycobacteria Isolated in Beijing, China. Microbiol Spectr, 2022, 10(6): e0137222. doi:10.1128/spectrum.01372-22.
|
[15] |
Zheng L, Wang H, Qi X, et al. Sudapyridine (WX-081) antibacterial activity against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo. mSphere, 2024, 9(2):e0051823. doi:10.1128/msphere.00518-23.
|
[16] |
Huang Z, Luo W, Xu D, et al. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent. Bioorg Med Chem Lett, 2022, 71: 128824. doi:10.1016/j.bmcl.2022.128824.
|
[17] |
Zheng L, Qi X, Zhang W, et al. Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum in BALB/c mice models. Front Cell Infect Microbiol, 2023, 22(13):1115530. doi:10.3389/fcimb.2023.1115530.
|
[18] |
Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC 207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008, 52(8):2831-2835. doi:10.1128/AAC.01204-07.
pmid: 18505852
|
[19] |
Kwak N, Dalcolmo MP, Daley CL, et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J, 2019, 54(1):1801991. doi:10.1183/13993003.01991-2018.
|
[20] |
胡鑫洋, 雷婧, 高静韬. 含贝达喹啉长程及短程治疗方案在耐药结核病不同人群中的应用. 国际流行病学传染病学杂志, 2024, 51(2):130-137. doi:10.3760/cma.j.cn331340-20230829-00028.
|
[21] |
Obregón-Henao A, Arnett KA, Henao-Tamayo M, et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother, 2015, 59(11):6904-6912. doi:10.1128/AAC.00459-15.
pmid: 26303795
|
[22] |
van Heeswijk RP, Dannemann B, Hoetelmans RM. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemothe, 2014, 69(9):2310-2318. doi:10.1093/jac/dku171.
|
[23] |
Sangana R, Gu H, Chun DY, et al. Evaluation of Clinical Drug Interaction Potential of Clofazimine Using Static and Dynamic Modeling Approaches. Drug Metab Dispos, 2018, 46(1):26-32. doi:10.1124/dmd.117.077834.
pmid: 29038231
|
[24] |
Kurosawa K, Rossenu S, Biewenga J, et al. Population Pharmacokinetic Analysis of Bedaquiline-Clarithromycin for Dose Selection Against Pulmonary Nontuberculous Mycobacteria Based on a Phase 1, Randomized, Pharmacokinetic Study. J Clin Pharmacol, 2021, 61(10):1344-1355. doi:10.1002/jcph.1887.
|
[25] |
Moj D, Hanke N, Britz H, et al. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug-Drug Interactions and Co-medication Regimens. AAPS J, 2017, 19(1):298-312. doi:10.1208/s12248-016-0009-9.
pmid: 27822600
|
[26] |
吕秋菊, 蒲强红. 大环内酯类抗菌药物介导的药物相互作用临床试验文献评估. 中国药房, 2017, 28(5):715-720. doi:10.6039/j.issn.1001-0408.2017.05.38.
|
[27] |
Nie W, Gao S, Su L, et al. Antibacterial activity of the novel compound Sudapyridine (WX-081) against Mycobacterium abscessus. Front Cell Infect Microbiol, 2023, 13: 1217975. doi:10.3389/fcimb.2023.1217975.
|