中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (12): 1560-1565.doi: 10.19982/j.issn.1000-6621.20240257
施春晶, 刘幸, 李龙芬, 李文明, 张华杰, 王戈, 曾海燕, 刘立(), 沈凌筠(
)
收稿日期:
2024-06-24
出版日期:
2024-12-10
发布日期:
2024-12-03
通信作者:
刘立,Email:liuli197210@163.com;沈凌筠,Email:m18608770202@163.com
基金资助:
Shi Chunjing, Liu Xing, Li Longfen, Li Wenming, Zhang Huajie, Wang Ge, Zeng Haiyan, Liu Li(), Shen Lingjun(
)
Received:
2024-06-24
Online:
2024-12-10
Published:
2024-12-03
Contact:
Liu Li,Email: liuli197210@163.com;Shen Lingjun,Email: m18608770202@163.com
Supported by:
摘要:
耐多药结核病的治疗面临诸多挑战,抗结核药贝达喹啉、德拉马尼和普托马尼作为近50年出现的具有新作用靶点的药物,对耐多药结核病表现出良好的治疗潜力,但相关研究表明,它们可影响肝功能导致抗结核药物性肝损伤。作者旨在通过对贝达喹啉、德拉马尼和普托马尼三种抗结核新药单药应用或多药联用下导致的肝功能损伤及相关发生机制及注意事项进行综述,以期为临床使用它们治疗耐多药结核病提供依据和参考。
中图分类号:
施春晶, 刘幸, 李龙芬, 李文明, 张华杰, 王戈, 曾海燕, 刘立, 沈凌筠. 贝达喹啉、德拉马尼和普托马尼治疗耐多药结核病对肝功能影响的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1560-1565. doi: 10.19982/j.issn.1000-6621.20240257
Shi Chunjing, Liu Xing, Li Longfen, Li Wenming, Zhang Huajie, Wang Ge, Zeng Haiyan, Liu Li, Shen Lingjun. Research progress on the effects of bedaquiline,delamanid and pretomanid on liver function in the treatment of multidrug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1560-1565. doi: 10.19982/j.issn.1000-6621.20240257
[1] | 中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019, 41(10): 1025-1073. doi:10.3969/j.issn.1000-6621.2019.10.001. |
[2] | World Health Organization. Global Tuberculosis Report 2023. Geneva: World Health Organization, 2023. |
[3] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[4] | Migliori GB, Tiberi S, Zumla A, et al. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int J Infect Dis, 2020, 92s: S15-S25. doi:10.1016/j.ijid.2020.01.042. |
[5] |
Shen T, Liu Y, Shang J, et al. Incidence and Etiology of Drug-Induced Liver Injury in Mainland China. Gastroenterology, 2019, 156(8): 2230-2241.e11. doi:10.1053/j.gastro.2019.02.002.
pmid: 30742832 |
[6] | Ji S, Lu B, Pan X. A nomogram model to predict the risk of drug-induced liver injury in patients receiving anti-tuberculosis treatment. Front Pharmacol, 2023, 14: 1153815. doi:10.3389/fphar.2023.1153815. |
[7] | Kushemererwa O, Nuwagira E, Kiptoo J, et al. Adverse drug reactions and associated factors in multidrug-resistant tuberculosis: A retrospective review of patient medical records at Mbarara Regional Referral Hospital, Uganda. SAGE Open Med, 2023, 11: 20503121231171350. doi:10.1177/20503121231171350. |
[8] | Abdusalomova M, Denisiuk O, Davtyan H, et al. Adverse Drug Reactions among Children with Tuberculosis in Tashkent, Uzbekistan, 2019. Int J Environ Res Public Health, 2021, 18(14): 7574. doi:10.3390/ijerph18147574. |
[9] |
Lee SS, Lee CM, Kim TH, et al. Frequency and risk factors of drug-induced liver injury during treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis, 2016, 20(6): 800-805. doi:10.5588/ijtld.15.0668.
pmid: 27155184 |
[10] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
pmid: 15591164 |
[11] | WHO Guidelines Approved by the Guidelines Review Committee. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[12] | Ndjeka N, Schnippel K, Master I, et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J, 2018, 52(6):1801528. doi:10.1183/13993003.01528-2018. |
[13] |
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs, 2022, 82(18): 1695-1715. doi:10.1007/s40265-022-01817-w.
pmid: 36479687 |
[14] | Worley MV, Estrada SJ. Bedaquiline: a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 2014, 34(11): 1187-1197. doi:10.1002/phar.1482. |
[15] | Girase R, Ahmad I, Pawara R, et al. Optimizing cardio, hepato and phospholipidosis toxicity of the Bedaquiline by chemoinformatics and molecular modelling approach. SAR QSAR Environ Res, 2022, 33(3): 215-235. doi:10.1080/1062936x.2022.2041724. |
[16] | Kakkar AK, Dahiya N. Bedaquiline for the treatment of resis-tant tuberculosis: promises and pitfalls. Tuberculosis (Edinb), 2014, 94(4): 357-362. doi:10.1016/j.tube.2014.04.001. |
[17] | Kotwal P, Khajuria P, Dhiman S, et al. Molecular mechanism for the involvement of CYP2E1/NF-κB axis in bedaquiline-induced hepatotoxicity. Life Sci, 2023, 315: 121375. doi:10.1016/j.lfs.2023.121375. |
[18] | WHO Guidelines Approved by the Guidelines Review Committee. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva: World Health Organization, 2013. |
[19] |
Pym AS, Diacon AH, Tang SJ, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J, 2016, 47(2): 564-574. doi:10.1183/13993003.00724-2015.
pmid: 26647431 |
[20] | Kim JH, Lee H, Oh IS, et al. Comparative safety of bedaquiline and delamanid in patients with multidrug resistant tuberculosis: A nationwide retrospective cohort study. J Microbiol Immunol Infect, 2023, 56(4): 842-852. doi:10.1016/j.jmii.2023.04.009. |
[21] |
Han X, Chen X, Sha W, et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis in China. Int J Tuberc Lung Dis, 2020, 24(8): 789-794. doi:10.5588/ijtld.19.0586.
pmid: 32912383 |
[22] | 张云玲, 韩伊, 张泉, 等. 含贝达喹啉方案治疗耐多药/广泛耐药肺结核的24周不良反应临床分析. 医药导报, 2022, 41(8): 1223-1228. doi:10.3870/j.issn.1004-0781.2022.08.026. |
[23] | Gao JT, Du J, Wu GH, et al. Bedaquiline-containing regimens in patients with pulmonary multidrug-resistant tuberculosis in China: focus on the safety. Infect Dis Poverty, 2021, 10(1): 32. doi:10.1186/s40249-021-00819-2. |
[24] |
Ryan NJ, Lo JH. Delamanid: first global approval. Drugs, 2014, 74(9): 1041-1045. doi:10.1007/s40265-014-0241-5.
pmid: 24923253 |
[25] | WHO Guidelines Approved by the Guidelines Review Committee. WHO consolidated guidelines on tuberculosis: Module 4: Treatment-Drug-resistant tuberculosis treatment. Geneva:World Health Organization, 2020. |
[26] | 中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版). 中华结核和呼吸杂志, 2019, 42(10):733-749. doi:10.3760/cma.j.issn.1001-0939.2019.10.006. |
[27] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018, 108: 186-194. doi:10.1016/j.tube.2017.12.006. |
[28] | Sarin R, Vohra V, Singla N, et al. Early efficacy and safety of Bedaquiline and Delamanid given together in a “Salvage Regimen” for treatment of drug-resistant tuberculosis. Indian J Tuberc, 2019, 66(1): 184-188. doi:10.1016/j.ijtb.2019.02.006. |
[29] | Auchynka V, Kumar AMV, Hurevich H, et al. Effectiveness and cardiovascular safety of delamanid-containing regimens in adults with multidrug-resistant or extensively drug-resistant tuberculosis: A nationwide cohort study from Belarus, 2016-18. Monaldi Arch Chest Dis, 2021, 91(1):10.4081/monaldi.2021.1647. doi:10.4081/monaldi.2021.1647. |
[30] | Mok J, Kang H, Koh WJ, et al. Final treatment outcomes of delamanid-containing regimens in patients with MDR-/XDR-TB in South Korea. Eur Respir J, 2019, 54(5):10.1183/13993003.00811-2019. doi:10.1183/13993003.00811-2019. |
[31] | 张亚萍, 唐佩军. 德拉马尼治疗特殊人群耐药结核病的安全性与有效性的研究进展. 中华传染病杂志, 2023, 41(10): 678-682. doi:10.3760/cma.j.cn311365-20230323-00083. |
[32] | Khoshnood S, Taki E, Sadeghifard N, et al. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front Microbiol, 2021, 12: 717045. doi:10.3389/fmicb.2021.717045. |
[33] | Liu Y, Matsumoto M, Ishida H, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb), 2018, 111: 20-30. doi:10.1016/j.tube.2018.04.008. |
[34] | Paikray E, Das P, Pattnaik M, et al. Adverse Drug Reaction Monitoring in Multidrug-Resistant Tuberculosis Patients Receiving Bedaquiline and Delamanid-Based Regimen. Cureus, 2022, 14(10): e30764. doi:10.7759/cureus.30764. |
[35] | 高孟秋, 高静韬, 马晓格, 等. 含德拉马尼方案治疗我国耐多药和利福平耐药肺结核患者的阶段性不良反应临床分析. 中华结核和呼吸杂志, 2024, 47 (7): 638-646. doi:10.3760/cma.j.cn112147-20240229-00117. |
[36] | Solodovnikova V, Kumar AMV, Hurevich H, et al. Effectiveness and safety of delamanid- or bedaquiline-containing regimens among children and adolescents with multidrug resistant or extensively drug resistant tuberculosis: A nationwide study from Belarus, 2015-19. Monaldi Arch Chest Dis, 2021, 91(1): 10.4081/monaldi.2021.1646. doi:10.4081/monaldi.2021.1646. |
[37] |
Keam SJ. Pretomanid: First Approval. Drugs, 2019, 79(16): 1797-1803. doi:10.1007/s40265-019-01207-9.
pmid: 31583606 |
[38] | Goswami ND, Ashkin D, Haley CA. Pretomanid in the Treatment of Patients with Tuberculosis in the United States. N Engl J Med, 2022, 387(9): 850-852. doi:10.1056/NEJMc2119461. |
[39] | 王其琼, 刘蕾. 抗耐药肺结核新药——普托马尼. 临床药物治疗杂志, 2020, 18(12): 27-31. doi:10.3969/j.issn.1672-3384.2020.12.006. |
[40] |
Deb U, Biswas S. Pretomanid: The latest USFDA-approved anti-tuberculosis drug. Indian J Tuberc, 2021, 68(2): 287-291. doi:10.1016/j.ijtb.2020.09.003.
pmid: 33845969 |
[41] | Stancil SL, Mirzayev F, Abdel-Rahman SM. Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date. Drug Des Devel Ther, 2021, 15: 2815-2830. doi:10.2147/dddt.S281639. |
[42] | Xu J, Li SY, Almeida DV, et al. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother, 2019, 63(5): 10.1128/aac.00021-19. doi:10.1128/AAC.00021-19. |
[43] | Gils T, Lynen L, de Jong BC, et al. Pretomanid for tuberculosis: a systematic review. Clin Microbiol Infect, 2022, 28(1): 31-42. doi:10.1016/j.cmi.2021.08.007. |
[44] | Nedelman JR, Salinger DH, Subramoney V, et al. An Exposure-Response Perspective on the Clinical Dose of Pretomanid. Antimicrob Agents Chemother, 2020, 65(1): 10.1128/aac.01121-20. doi:10.1128/AAC.01121-20. |
[45] | Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020, 382(10): 893-902. doi:10.1056/NEJMoa1901814. |
[46] |
Tweed CD, Dawson R, Burger DA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med, 2019, 7(12): 1048-1058. doi:10.1016/s2213-2600(19)30366-2.
pmid: 31732485 |
[47] | Olayanju O, Esmail A, Limberis J, et al. A regimen containing bedaquiline and delamanid compared to bedaquiline in patients with drug-resistant tuberculosis. Eur Respir J, 2020, 55(1): 1901181. doi:10.1183/13993003.01181-2019. |
[48] |
Putra ON, Yulistiani Y, Soedarsono S, et al. Effectiveness and safety of regimen containing bedaquiline and delamanid in patients with drug-resistant tuberculosis. Perspect Clin Res, 2024, 15(2): 89-93. doi:10.4103/picr.picr_1_23.
pmid: 38765544 |
[49] | Huerga H, Khan U, Bastard M, et al. Safety and Effectiveness Outcomes From a 14-Country Cohort of Patients With Multi-Drug Resistant Tuberculosis Treated Concomitantly With Bedaquiline, Delamanid, and Other Second-Line Drugs. Clin Infect Dis, 2022, 75(8): 1307-1314. doi:10.1093/cid/ciac176. |
[50] | Hsu HL, Bai KJ, Chiang YC, et al. Hepatitis associated with prothionamide for treatment of multidrug-resistant tuberculosis. J Formos Med Assoc, 2010, 109(12): 923-927. doi:10.1016/S0929-6646(10)60141-6. |
[51] | Wang Q, Pang Y, Jing W, et al. Clofazimine for Treatment of Extensively Drug-Resistant Pulmonary Tuberculosis in China. Antimicrob Agents Chemotuer, 2018, 62(4): e02149-17. doi:10.1128/AAC.02149-17. |
[52] | 戈启萍, 王庆枫, 段鸿飞, 等. 含丙硫异烟胺和对氨基水杨酸治疗方案发生药物性肝损伤129例临床分析.中华结核和呼吸杂志, 2013, 36(10)737-740. doi:10.3760/cma.j.issn.1001-0939.2013.10.008. |
[53] |
Zhang Q, Wu Z, Zhang Z, et al. Efficacy and effect of free treatment on multidrug-resistant tuberculosis. Exp Ther Med, 2016, 11(3): 777-782. doi:10.3892/etm.2015.2966.
pmid: 26997992 |
[1] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
[2] | 中国防痨协会《中国防痨杂志》编辑委员会 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所 Inspire⁃CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
[3] | 李雪莲, 张红燕, 王隽, 王庆枫, 马丽萍, 初乃惠, 聂文娟. 耐药肺结核患者超疗程使用德拉马尼的安全性分析[J]. 中国防痨杂志, 2025, 47(2): 164-168. |
[4] | 石宜林, 顾岩. 糖皮质激素联合抗结核药物治疗对结核性浆膜炎有效性、不良反应及病死率的Meta分析[J]. 中国防痨杂志, 2025, 47(1): 77-86. |
[5] | 王菲菲, 王鹏森, 范云帆, 李同心. 重庆市244例结核病患者一线抗结核药物血药浓度情况分析[J]. 中国防痨杂志, 2024, 46(S1): 29-32. |
[6] | 孟学兵, 陈爱军. 老年肺结核患者抗结核药物的不良反应研究[J]. 中国防痨杂志, 2024, 46(S1): 76-78. |
[7] | 史露露, 景辉, 梁敏, 李学政. 液相色谱串联质谱法检测抗结核药物血药浓度情况的临床分析[J]. 中国防痨杂志, 2024, 46(8): 886-891. |
[8] | 段淑娟, 王伟, 逄宇, 李凌. 酪氨酸激酶抑制剂调控宿主抗结核作用的研究进展[J]. 中国防痨杂志, 2024, 46(5): 584-589. |
[9] | 加依那提·金格斯, 王新旗, 刘年强, 王森路, 依帕尔·艾海提, 冯建宇, 黄涛, 克地尔叶克孜·吾甫尔. 387名结核分枝杆菌潜伏感染者预防性治疗服药完成情况及影响因素分析[J]. 中国防痨杂志, 2024, 46(12): 1496-1503. |
[10] | 李雪莲, 荆玮, 王庆枫, 初乃惠, 聂文娟. 含新药口服短程方案治疗耐多药/利福平耐药结核病三例并文献复习[J]. 中国防痨杂志, 2024, 46(11): 1327-1334. |
[11] | 沙巍. PAN-TB治疗策略的实施对结核病防控的意义及挑战[J]. 中国防痨杂志, 2024, 46(10): 1188-1192. |
[12] | 中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院. 抗结核药物所致QTc间期延长临床监测和管理专家共识[J]. 中国防痨杂志, 2024, 46(1): 8-17. |
[13] | 王庆, 丁彩红, 高绪胜, 解丹, 蒋培培, 熊瑜. 含贝达喹啉方案治疗非结核分枝杆菌病三例[J]. 中国防痨杂志, 2023, 45(8): 814-817. |
[14] | 王红红, 郭少晨, 周文强, 刘忠泉, 朱慧, 陆宇. 耐药结核病患者利奈唑胺血药浓度对血液系统毒性发生的影响[J]. 中国防痨杂志, 2023, 45(2): 165-171. |
[15] | 陈芳, 张小佛, 周海依, 张锋, 王曼知. 儿童抗结核药物性肝损伤状况及相关影响因素分析[J]. 中国防痨杂志, 2023, 45(1): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||