中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (7): 631-638.doi: 10.19982/j.issn.1000-6621.20230153
收稿日期:
2023-05-10
出版日期:
2023-07-10
发布日期:
2023-06-29
通信作者:
夏辉,Email:基金资助:
Song Yuanyuan, Xia Hui(), Zhao Yanlin
Received:
2023-05-10
Online:
2023-07-10
Published:
2023-06-29
Contact:
Xia Hui, Email: Supported by:
摘要:
结核分枝杆菌表型药物敏感性试验仍是耐药性检测的重要手段,但某些药物结果的准确性和可重复性较差,临界浓度是影响结果的关键因素之一。笔者对结核分枝杆菌表型药物敏感性试验临界浓度的建立及修订过程进行系统总结和介绍,为实验室技术人员和临床医生正确理解药物敏感性试验方法及结果,以及加强更新临界浓度的研究提供借鉴。
中图分类号:
宋媛媛, 夏辉, 赵雁林. 结核分枝杆菌表型药物敏感性试验临界浓度设定发展历程[J]. 中国防痨杂志, 2023, 45(7): 631-638. doi: 10.19982/j.issn.1000-6621.20230153
Song Yuanyuan, Xia Hui, Zhao Yanlin. Development process of setting of critical concentrations for phenotypic drug susceptibility testing of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(7): 631-638. doi: 10.19982/j.issn.1000-6621.20230153
表1
我国常用结核分枝杆菌表型药物敏感性试验方法各药物折点汇总
药品 | L-J固体比例法(μg/ml) | MGIT液体法(μg/ml) | 微孔板法(μg/ml) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中国 推荐1 | WHO 推荐2 | CLSI 推荐3 | 中国 推荐1 | WHO 推荐2 | CLSI 推荐3,4 | EUCAST 推荐5 | DST熟练 度测试 推荐敏感 (≤)6 | WHO推荐 敏感(≤)7 | CLSI推荐4 | EUCAST 推荐敏感 (≤)5 | ||||
敏感 (≤) | 中介 (=) | 耐药 (≥) | ||||||||||||
异烟肼8 | 0.2 | 0.2 | 0.25/1.0 | 0.1 | 0.1 | 0.1/0.4 | - | 0.1 | 0.125 | 0.12 | - | 0.25 | - | |
链霉素9 | 4.0 | 4.0 | 4.0 | 1.0 | 1.0 | 1.0/4.0 | - | - | - | - | - | - | - | |
乙胺丁醇9 | 2.0 | 2.0 | 2.0 | 5.0 | 5.0 | 5.0/7.5 | - | - | 4.0 | 2.0 | 4.0 | 8.0 | - | |
利福平10 | 40.0 | 40.0 | 40.0 | 1.0 | 0.5* | 1.0 | - | 0.5 | 0.5 | 0.5* | - | 1.0* | - | |
吡嗪酰胺 | - | - | - | 100.0 | 100.0 | 100.0 | - | - | - | - | - | - | - | |
左氧氟沙星 | 2.0* | 2.0* | - | 1.0 | 1.0 | 1.5 | - | 1.0 | 1.0 | - | - | - | - | |
莫西沙星11 | 1.0* | 1.0* | - | 0.25/1.0 | 0.25/1.0 | 0.25/2.0 | - | 1.0 | - | - | - | - | - | |
贝达喹啉 | - | - | - | 1.0* | 1.0* | - | - | 0.25 | 0.125(0.25) | - | - | - | 0.25* | |
利奈唑胺 | - | - | - | 1.0 | 1.0 | 1.0 | - | 1.0 | 1.0(2.0) | - | - | - | - | |
氯法齐明 | - | - | - | 1.0* | 1.0* | - | - | 0.25 | 0.25(0.5) | - | - | - | - | |
德拉马尼 | - | - | - | 0.06* | 0.06* | - | - | 0.06 | 0.06(0.125) | - | - | - | 0.06* | |
阿米卡星 | 30.0 | 30.0 | 30.0 | 1.0 | 1.0 | 1.0 | - | 1.0 | - | - | - | - | - | |
卡那霉素 | 30.0 | 30.0 | 30.0 | 2.5 | 2.5 | 2.5 | - | 4.0 | 4.0 | - | - | - | - | |
氧氟沙星 | 4.0 | - | - | 2.0 | - | - | - | - | - | - | - | - | - | |
卷曲霉素 | 40.0 | 40.0 | 40.0 | 2.5 | 2.5 | 2.5 | - | - | - | - | - | - | - | |
乙硫异烟胺 | 40.0 | 40.0 | 40.0 | 5.0 | 5.0 | - | - | - | 4.0 | - | - | - | - | |
丙硫异烟胺 | 40.0 | 40.0 | 40.0 | 2.5 | 2.5 | - | - | - | - | - | - | - | - | |
对氨基水杨酸 | 1.0 | - | 1.0 | - | - | 4.0 | - | - | - | - | - | - | - | |
环丝氨酸 | -# | -# | -# | - | - | - | - | - | 32.0(64.0) | - | - | - | - | |
普瑞玛尼 | - | - | - | - | - | - | 2.0* | - | - | - | - | - | - |
[1] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[2] |
Schön T, Matuschek E, Mohamed S, et al. Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clin Microbiol Infect, 2019, 25(4):403-405. doi:10.1016/j.cmi.2019.01.019.
doi: 10.1016/j.cmi.2019.01.019 URL |
[3] |
Van Deun A, Aung KJ, Bola V, et al. Rifampin drug resis-tance tests for tuberculosis: challenging the gold standard. J Clin Microbiol, 2013, 51(8):2633-2640. doi:10.1128/JCM.00553-13.
doi: 10.1128/JCM.00553-13 URL |
[4] |
Köser CU, Maurer FP, Kranzer K. Those who cannot remember the past are condemned to repeat it: Drug-susceptibility testing for bedaquiline and delamanid. Int J Infect Dis, 2019, 80S:S32-S35. doi:10.1016/j.ijid.2019.02.027.
doi: 10.1016/j.ijid.2019.02.027 |
[5] |
Schön T, Köser CU, J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex? Clin Microbiol Infect, 2020, 26(11):1453-1455. doi:10.1016/j.cmi.2020.07.037.
doi: 10.1016/j.cmi.2020.07.037 URL |
[6] | Canetti G, Froman S, Grosset J, et al. Mycobacteria: laboratory methods for testing drug susceptibility and resistance. Bull World Health Organ, 1963, 29(5):565-578. |
[7] |
Gupta A, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: Methods, principles and applications. Indian J Tuberc, 2015, 62(1):13-22. doi:10.1016/j.ijtb.2015.02.003.
doi: 10.1016/j.ijtb.2015.02.003 URL |
[8] |
Pfyffer GE, Welscher HM, Kissling P, et al. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol, 1997, 35(2):364-368. doi:10.1128/jcm.35.2.364-368.1997.
doi: 10.1128/jcm.35.2.364-368.1997 pmid: 9003597 |
[9] |
Palomino JC, Traore H, Fissette K, et al. Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 1999, 3(4):344-348.
pmid: 10206506 |
[10] | World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2022. |
[11] |
夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读. 中国防痨杂志, 2022, 44(7):641-645. doi:10.19982/j.issn.1000-6621.20220187.
doi: 10.19982/j.issn.1000-6621.20220187 |
[12] | Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. Wayne: Clinical and Laboratory Standards Institute, 2023. |
[13] |
Ängeby K, Juréen P, Kahlmeter G, et al. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ, 2012, 90(9):693-698. doi:10.2471/BLT.11.096644.
doi: 10.2471/BLT.11.096644 URL |
[14] |
Kahlmeter G. The 2014 Garrod Lecture: EUCAST- are we heading towards international agreement? J Antimicrob Chemother, 2015, 70(9):2427-2439. doi:10.1093/jac/dkv145.
doi: 10.1093/jac/dkv145 pmid: 26089441 |
[15] | European Committee on Antimicrobial Susceptibility Testing. EUCAST definitions of clinical breakpoints and epidemiological cut-off values. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2019. |
[16] |
Antimycobacterial Susceptibility Testing Group. Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment. Eur Respir J, 2022, 59(4):2200166. doi:10.1183/13993003.00166-2022.
doi: 10.1183/13993003.00166-2022 URL |
[17] | Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 3rd ed. Wayne: Clinical and Laboratory Standards Institute, 2018. |
[18] |
Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis, 1965, 92(5):687-703. doi:10.1164/arrd.1965.92.5.687.
doi: 10.1164/arrd.1965.92.5.687 |
[19] |
Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J, 2005, 25(3):564-569. doi:10.1183/09031936.05.00111304.
doi: 10.1183/09031936.05.00111304 pmid: 15738303 |
[20] |
Kam KM, Sloutsky A, Yip CW, et al. Determination of critical concentrations of second-line anti-tuberculosis drugs with clinical and microbiological relevance. Int J Tuberc Lung Dis, 2010, 14(3):282-288.
pmid: 20132618 |
[21] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017, 23(3):154-160. doi:10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL |
[22] | World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis, 4th ed. Geneva: World Health Organization, 2009. |
[23] |
Ismail NA, Aono A, Borroni E, et al. A Multimethod, Multicountry Evaluation of Breakpoints for Bedaquiline Resistance Determination. Antimicrob Agents Chemother, 2020, 64(9):e00479-20. doi:10.1128/AAC.00479-20.
doi: 10.1128/AAC.00479-20 |
[24] |
Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis, 2004, 190(9):1642-1651. doi:10.1086/424849.
doi: 10.1086/424849 URL |
[25] |
Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother, 2010, 54(4):1484-1491. doi:10.1128/AAC.01474-09.
doi: 10.1128/AAC.01474-09 pmid: 20086150 |
[26] |
Liu Y, Moodley M, Pasipanodya JG, et al. Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrob Agents Chemother, 2023, 67(4):e0140122. doi:10.1128/aac.01401-22.
doi: 10.1128/aac.01401-22 URL |
[27] |
Alghamdi WA, Al-Shaer MH, An G, et al. Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis. Antimicrob Agents Chemother, 2020, 64(10):e01174-20. doi:10.1128/AAC.01174-20.
doi: 10.1128/AAC.01174-20 |
[28] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2018. |
[29] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[30] | World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2014. |
[31] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022. |
[32] |
Köser CU, Georghiou SB, Schön T, et al. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol, 2021, 59(4):e02328-20. doi:10.1128/JCM.02328-20.
doi: 10.1128/JCM.02328-20 |
[33] |
Van Deun A, Decroo T, Aung KJM, et al. Mycobacterium tuberculosis borderline rpoB mutations: emerging from the unknown. Eur Respir J, 2021, 58(3):2100783. doi:10.1183/13993003.00783-2021.
doi: 10.1183/13993003.00783-2021 URL |
[34] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013, 208(9):1464-1473. doi:10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 pmid: 23901086 |
[35] |
CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4):2200239. doi:10.1183/13993003.00239-2022.
doi: 10.1183/13993003.00239-2022 URL |
[36] |
Mohamed S, Köser CU, Salfinger M, et al. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics?. Eur Respir J, 2021, 57(3):2004077. doi:10.1183/13993003.04077-2020.
doi: 10.1183/13993003.04077-2020 URL |
[37] |
Schön T, Juréen P, Giske CG, et al. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother, 2009, 64(4):786-793. doi:10.1093/jac/dkp262.
doi: 10.1093/jac/dkp262 URL |
[38] |
Domínguez J, Boettger EC, Cirillo D, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis, 2016, 20(1):24-42. doi:10.5588/ijtld.15.0221.
doi: 10.5588/ijtld.15.0221 pmid: 26688526 |
[39] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
doi: 10.5588/ijtld.21.0428 pmid: 34615575 |
[40] |
Disratthakit A, Prammananan T, Tribuddharat C, et al. Role of gyrB Mutations in Pre-extensively and Extensively Drug-Resistant Tuberculosis in Thai Clinical Isolates. Antimicrob Agents Chemother, 2016, 60(9):5189-5197. doi:10.1128/AAC.00539-16.
doi: 10.1128/AAC.00539-16 pmid: 27297489 |
[41] |
Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J, 2017, 50(6):1701354. doi:10.1183/13993003.01354-2017.
doi: 10.1183/13993003.01354-2017 URL |
[42] | World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. Geneva: World Health Organization, 2018. |
[43] |
Köser CU, Cirillo DM, Miotto P. How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrob Agents Chemother, 2020, 64(9):e01003-20. doi:10.1128/AAC.01003-20.
doi: 10.1128/AAC.01003-20 |
[44] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. |
[45] |
Chedore P, Bertucci L, Wolfe J, et al. Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2010, 48(1):300-301.
doi: 10.1128/JCM.01775-09 pmid: 19923479 |
[46] |
Zhang Y, Permar S, Sun Z. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol, 2002, 51(1):42-49. doi:10.1099/0022-1317-51-1-42.
doi: 10.1099/0022-1317-51-1-42 pmid: 11800471 |
[47] |
Hoffner S, Angeby K, Sturegård E, et al. Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience. Int J Tuberc Lung Dis, 2013, 17(11):1486-1490. doi:10.5588/ijtld.13.0195.
doi: 10.5588/ijtld.13.0195 pmid: 24125455 |
[48] |
Werngren J, Alm E, Mansjö M. Non-pncA Gene-Mutated but Pyrazinamide-Resistant Mycobacterium tuberculosis: Why Is That?. J Clin Microbiol, 2017, 55(6):1920-1927. doi:10.1128/JCM.02532-16.
doi: 10.1128/JCM.02532-16 pmid: 28404681 |
[49] | European Committee on Antimicrobial Susceptibility Testing. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2022. |
[50] | European Committee on Antimicrobial Susceptibility Testing. Redefining susceptibility testing categories S, I and R. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2019. |
[51] | 陈耿, 何宇, 陈勇川, 等. 中国成人肝移植受体微乳化环孢素A吸收期血药浓度与药物暴露量的相关性研究. 中华肝脏病杂志, 2004, 12(6):328-330. |
[52] | World Health Organization. WHO operational handbook on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022. |
[53] | World Health Organization. Line probe assays for detection of drug-resistant tuberculosis: interpretation and reporting manual for laboratory staff and clinicians. Geneva: World Health Organization, 2022. |
[54] |
Ando H, Miyoshi-Akiyama T, Watanabe S, et al. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol Microbiol, 2014, 91(3):538-547. doi:10.1111/mmi.12476.
doi: 10.1111/mmi.12476 URL |
[55] |
Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med, 2015, 191(9):1058-1065. doi:10.1164/rccm.201407-1264OC.
doi: 10.1164/rccm.201407-1264OC URL |
[56] |
Seijger C, Hoefsloot W, Bergsma-de Guchteneire I, et al. High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS One, 2019, 14(3):e0213718. doi:10.1371/journal.pone.0213718.
doi: 10.1371/journal.pone.0213718 URL |
[57] |
Onorato L, Gentile V, Russo A, et al. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect, 2021, 27(6):830-837. doi:10.1016/j.cmi.2021.03.031.
doi: 10.1016/j.cmi.2021.03.031 URL |
[58] |
Kahlmeter G, Giske CG, Kirn TJ, et al. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol, 2019, 57(9):e01129-19. doi:10.1128/JCM.01129-19.
doi: 10.1128/JCM.01129-19 |
[59] |
Blöchliger N, Keller PM, Böttger EC, et al. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities. J Antimicrob Chemother, 2017, 72(9):2553-2561. doi:10.1093/jac/dkx196.
doi: 10.1093/jac/dkx196 pmid: 28859448 |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[3] | 中国防痨协会《中国防痨杂志》编辑委员会 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所 Inspire⁃CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
[4] | 张超, 于霞, 黄海荣, 刘伟, 刘涛. 七氟烷对结核分枝杆菌体外抑菌效果的评价[J]. 中国防痨杂志, 2025, 47(2): 158-163. |
[5] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[6] | 王健华, 史坤雄, 黄雅欣, 梁葵弟, 梁汉成. GeneXpert MTB/RIF对快速诊断肺结核及检测利福平耐药性的价值分析[J]. 中国防痨杂志, 2024, 46(S1): 94-96. |
[7] | 陈双双, 田丽丽, 王嫩寒, 杨新宇, 赵琰枫, 李传友, 代小伟. 17种抗生素对北京地区快速生长分枝杆菌体外抑菌效果分析[J]. 中国防痨杂志, 2024, 46(9): 1056-1062. |
[8] | 李杨, 孙峰, 张文宏. 结核病短程治疗研究:回顾与展望[J]. 中国防痨杂志, 2024, 46(9): 991-997. |
[9] | 李志丽, 刘宇红. 《世界卫生组织结核病整合指南模块6: 结核病及其共患病-HIV》解读[J]. 中国防痨杂志, 2024, 46(8): 869-873. |
[10] | 于兰, 陈双双, 王嫩寒, 田丽丽, 赵琰枫, 樊瑞芳, 刘海灿, 李传友, 代小伟. 利福平耐药结核分枝杆菌对氟喹诺酮类药物表型耐药与其基因突变的一致性研究[J]. 中国防痨杂志, 2024, 46(8): 942-950. |
[11] | 田宏晶, 张彦军, 邓强, 李军杰, 杨军, 刘鑫锋, 杜建强. 基于核因子κB受体活化因子配体信号通路激活破骨细胞治疗骨结核的研究进展[J]. 中国防痨杂志, 2024, 46(8): 971-975. |
[12] | 傅可言, 朱邦政, 叶健. 间质性肺疾病合并结核分枝杆菌感染的研究进展[J]. 中国防痨杂志, 2024, 46(7): 823-829. |
[13] | 刘桂珍, 邓国防. 《结核病政策指南制订过程中发现的证据和研究缺口(第2版)》解读——结核病相关共病[J]. 中国防痨杂志, 2024, 46(6): 618-624. |
[14] | 中国防痨协会护理专业分会, 同济大学附属上海市肺科医院. 肺结核患者营养管理护理实践专家共识[J]. 中国防痨杂志, 2024, 46(5): 495-501. |
[15] | 程梦丽, 姜广路, 霍凤敏, 薛毅, 于霞. 夫西地酸对分枝杆菌的体外抑菌效果评价[J]. 中国防痨杂志, 2024, 46(4): 461-466. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||