中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (4): 426-433.doi: 10.19982/j.issn.1000-6621.20220399
收稿日期:
2022-10-13
出版日期:
2023-04-10
发布日期:
2023-03-31
通信作者:
孙照刚
E-mail:sunzg75@163.com
基金资助:
Wang Wenjing, Sun Hong, Sun Zhaogang()
Received:
2022-10-13
Online:
2023-04-10
Published:
2023-03-31
Contact:
Sun Zhaogang
E-mail:sunzg75@163.com
Supported by:
摘要:
结核分枝杆菌(Mycobacterium tuberculosis,MTB)是引起机体发生结核感染的重大病原体。天然免疫在宿主抵抗MTB入侵过程中发挥了重要作用,机体细胞内的多种模式识别受体(pattern recognition receptors,PRR)参与了针对MTB的识别。PRR作为天然免疫的“启动器”,在识别MTB后经过信号通路的转导激活天然免疫的产生。可被PRR识别的MTB组分种类繁多,包括:DNA、脂多糖、蛋白质等。本文重点关注可被PRR识别的MTB DNA,从其来源、可被识别的PRR种类,以及PRR以MTB DNA为病原相关分子模式介导相关分子信号通路激活天然免疫的机制3个方面综述了MTB DNA经由PRR激活天然免疫的过程,并着重探讨了Toll样受体9、环鸟苷酸-腺苷酸合成酶和黑色素瘤缺乏因子2样受体等PRR激活天然免疫机制的研究进展。最后,讨论了MTB DNA的应用前景,以期为开发MTB DNA相关疫苗和结核病的诊断拓展思路。
中图分类号:
王文敬, 孙宏, 孙照刚. 结核分枝杆菌DNA介导模式识别受体激活天然免疫机制的研究进展[J]. 中国防痨杂志, 2023, 45(4): 426-433. doi: 10.19982/j.issn.1000-6621.20220399
Wang Wenjing, Sun Hong, Sun Zhaogang. Progress of innate immune mechanism activated by Mycobacterium tuberculosis DNA-mediated pattern recognition receptors[J]. Chinese Journal of Antituberculosis, 2023, 45(4): 426-433. doi: 10.19982/j.issn.1000-6621.20220399
[1] |
Killick KE, Ní Cheallaigh C, O’Farrelly C, et al. Receptor-mediated recognition of mycobacterial pathogens. Cell Microbiol, 2013, 15(9): 1484-1495. doi:10.1111/cmi.12161.
doi: 10.1111/cmi.12161 pmid: 23795683 |
[2] |
Kleinnijenhuis J, Oosting M, Joosten LA, et al. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol, 2011, 2011: 405310. doi:10.1155/2011/405310.
doi: 10.1155/2011/405310 |
[3] |
Burkert S, Schumann RR. RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel), 2020, 8(1): 67. doi:10.3390/vaccines8010067.
doi: 10.3390/vaccines8010067 |
[4] |
Huang J, Brumell JH. NADPH oxidases contribute to autophagy regulation. Autophagy, 2009, 5(6): 887-889. doi:10.4161/auto.9125.
doi: 10.4161/auto.9125 pmid: 19550142 |
[5] |
Suzuki Y, Shirai M, Asada K, et al. Macrophage mannose receptor, CD206, predict prognosis in patients with pulmonary tuberculosis. Sci Rep, 2018, 8(1): 13129. doi:10.1038/s41598-018-31565-5.
doi: 10.1038/s41598-018-31565-5 pmid: 30177769 |
[6] |
Bai W, Liu H, Ji Q, et al. TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cell Signal, 2014, 26(5): 942-950. doi:10.1016/j.cellsig.2014.01.015.
doi: 10.1016/j.cellsig.2014.01.015 pmid: 24462705 |
[7] |
Wassermann R, Gulen MF, Sala C, et al. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host Microbe, 2015, 17(6): 799-810. doi:10.1016/j.chom.2015.05.003.
doi: 10.1016/j.chom.2015.05.003 pmid: 26048138 |
[8] |
Majlessi L, Brosch R. Mycobacterium tuberculosis Meets the Cytosol: The Role of cGAS in Anti-mycobacterial Immunity. Cell Host Microbe, 2015, 17(6): 733-735. doi:10.1016/j.chom.2015.05.017.
doi: 10.1016/j.chom.2015.05.017 pmid: 26067600 |
[9] |
Collins AC, Cai H, Li T, et al. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host Microbe, 2015, 17(6): 820-828. doi:10.1016/j.chom.2015.05.005.
doi: 10.1016/j.chom.2015.05.005 pmid: 26048137 |
[10] |
Cho SM, Shin S, Kim Y, et al. A novel approach for tuberculosis diagnosis using exosomal DNA and droplet digital PCR. Clin Microbiol Infect, 2020, 26(7): 942.e1-942.e5. doi:10.1016/j.cmi.2019.11.012.
doi: 10.1016/j.cmi.2019.11.012 URL |
[11] |
Torralba D, Baixauli F, Villarroya-Beltri C, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun, 2018, 9(1): 2658. doi:10.1038/s41467-018-05077-9.
doi: 10.1038/s41467-018-05077-9 pmid: 29985392 |
[12] |
Shah S, Bohsali A, Ahlbrand SE, et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J Immunol, 2013, 191(7): 3514-3518. doi:10.4049/jimmunol.1301331.
doi: 10.4049/jimmunol.1301331 URL |
[13] |
Traver S, Assou S, Scalici E, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update, 2014, 20(6): 905-923. doi:10.1093/humupd/dmu031.
doi: 10.1093/humupd/dmu031 pmid: 24973359 |
[14] |
Manzanillo PS, Shiloh MU, Portnoy DA, et al. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe, 2012, 11(5): 469-480. doi:10.1016/j.chom.2012.03.007.
doi: 10.1016/j.chom.2012.03.007 pmid: 22607800 |
[15] |
Latz E, Schoenemeyer A, Visintin A, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol, 2004, 5(2): 190-198. doi:10.1038/ni1028.
doi: 10.1038/ni1028 pmid: 14716310 |
[16] |
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 2010, 10(12): 826-837. doi:10.1038/nri2873.
doi: 10.1038/nri2873 pmid: 21088683 |
[17] |
Tuladhar S, Kanneganti TD. NLRP12 in innate immunity and inflammation. Mol Aspects Med, 2020, 76: 100887. doi:10.1016/j.mam.2020.100887.
doi: 10.1016/j.mam.2020.100887 |
[18] |
Singh DP, Bagam P, Sahoo MK, et al. Immune-related gene polymorphisms in pulmonary diseases. Toxicology, 2017, 383: 24-39. doi:10.1016/j.tox.2017.03.020.
doi: S0300-483X(17)30097-5 pmid: 28366820 |
[19] |
Mortaz E, Adcock IM, Tabarsi P, et al. Interaction of Pattern Recognition Receptors with Mycobacterium tuberculosis. J Clin Immunol, 2015, 35(1):1-10. doi:10.1007/s10875-014-0103-7.
doi: 10.1007/s10875-014-0103-7 |
[20] |
Stenger S, Modlin RL. Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curr Opin Immunol, 2002, 14(4): 452-457. doi:10.1016/s0952-7915(02)00355-2.
doi: 10.1016/s0952-7915(02)00355-2 URL |
[21] |
Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect, 2002, 4(9): 937-944. doi:10.1016/s1286-4579(02)01611-8.
doi: 10.1016/s1286-4579(02)01611-8 pmid: 12106786 |
[22] |
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol, 2014, 5: 461. doi:10.3389/fimmu.2014.00461.
doi: 10.3389/fimmu.2014.00461 pmid: 25309543 |
[23] |
Sahoo BR. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol, 2020, 161: 1602-1617. doi:10.1016/j.ijbiomac.2020.07.293.
doi: S0141-8130(20)34052-6 pmid: 32755705 |
[24] |
Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol, 2013, 5(1): a011247. doi:10.1101/cshperspect.a011247.
doi: 10.1101/cshperspect.a011247 URL |
[25] |
Fremond CM, Togbe D, Doz E, et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol, 2007, 179(2): 1178-1189. doi:10.4049/jimmunol.179.2.1178.
doi: 10.4049/jimmunol.179.2.1178 pmid: 17617611 |
[26] |
Xu Y, Jagannath C, Liu XD, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity, 2007, 27(1): 135-144. doi:10.1016/j.immuni.2007.05.022.
doi: 10.1016/j.immuni.2007.05.022 pmid: 17658277 |
[27] |
Shukla S, Richardson ET, Drage MG, et al. Mycobacterium tuberculosis Lipoprotein and Lipoglycan Binding to Toll-Like Receptor 2 Correlates with Agonist Activity and Functional Outcomes. Infect Immun, 2018, 86(10): e00450-18. doi:10.1128/IAI.00450-18.
doi: 10.1128/IAI.00450-18 |
[28] |
Schurz H, Daya M, Möller M, et al. TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS One, 2015, 10(10): e0139711. doi:10.1371/journal.pone.0139711.
doi: 10.1371/journal.pone.0139711 |
[29] |
Ben-Ali M, Barbouche MR, Bousnina S, et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol, 2004, 11(3): 625-626. doi:10.1128/CDLI.11.3.625-626.2004.
doi: 10.1128/CDLI.11.3.625-626.2004 pmid: 15138193 |
[30] |
Sepehri Z, Kiani Z, Kohan F, et al. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med, 2019, 50(2): 117-129. doi:10.1093/labmed/lmy047.
doi: 10.1093/labmed/lmy047 pmid: 30124945 |
[31] |
Lv J, He X, Wang H, et al. TLR4-NOX2 axis regulates the phagocytosis and killing of Mycobacterium tuberculosis by macrophages. BMC Pulm Med, 2017, 17(1): 194. doi:10.1186/s12890-017-0517-0.
doi: 10.1186/s12890-017-0517-0 URL |
[32] |
Thada S, Horvath GL, Müller MM, et al. Interaction of TLR4 and TLR8 in the Innate Immune Response against Mycobacterium tuberculosis. Int J Mol Sci, 2021, 22(4): 1560. doi:10.3390/ijms22041560.
doi: 10.3390/ijms22041560 URL |
[33] |
Doz E, Rose S, Court N, et al. Mycobacterial phosphatidylinositol mannosides negatively regulate host Toll-like receptor 4, MyD88-dependent proinflammatory cytokines, and TRIF-dependent co-stimulatory molecule expression. J Biol Chem, 2009, 284(35): 23187-23196. doi:10.1074/jbc.M109.037846.
doi: 10.1074/jbc.M109.037846 pmid: 19561082 |
[34] |
Tsolaki AG, Varghese PM, Kishore U. Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. Adv Exp Med Biol, 2021, 1313: 179-215. doi:10.1007/978-3-030-67452-6_9.
doi: 10.1007/978-3-030-67452-6_9 |
[35] |
Rahman AH, Taylor DK, Turka LA. The contribution of direct TLR signaling to T cell responses. Immunol Res, 2009, 45(1): 25-36. doi:10.1007/s12026-009-8113-x.
doi: 10.1007/s12026-009-8113-x pmid: 19597998 |
[36] |
Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813): 740-745. doi:10.1038/35047123.
doi: 10.1038/35047123 |
[37] |
Mittal M, Biswas SK, Singh V, et al. Association of Toll like receptor 2 and 9 gene variants with pulmonary tuberculosis: exploration in a northern Indian population. Mol Biol Rep, 2018, 45(4): 469-476. doi:10.1007/s11033-018-4182-z.
doi: 10.1007/s11033-018-4182-z |
[38] |
Bharti D, Kumar A, Mahla RS, et al. The role of TLR9 polymorphism in susceptibility to pulmonary tuberculosis. Immunogenetics, 2014, 66(12): 675-681. doi:10.1007/s00251-014-0806-1.
doi: 10.1007/s00251-014-0806-1 pmid: 25248338 |
[39] |
Liu N, Pang X, Zhang H, et al. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol, 2021, 12: 814709. doi:10.3389/fimmu.2021.814709.
doi: 10.3389/fimmu.2021.814709 URL |
[40] |
Lahaye X, Gentili M, Silvin A, et al. NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation. Cell, 2018, 175(2): 488-501.e22. doi:10.1016/j.cell.2018.08.062.
doi: S0092-8674(18)31163-2 pmid: 30270045 |
[41] |
Carroll EC, Jin L, Mori A, et al. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type Ⅰ Interferons. Immunity, 2016, 44(3): 597-608. doi:10.1016/j.immuni.2016.02.004.
doi: 10.1016/j.immuni.2016.02.004 URL |
[42] |
Li Q, Liu C, Yue R, et al. cGAS/STING/TBK1/IRF 3 Signaling Pathway Activates BMDCs Maturation Following Mycobacterium bovis Infection. Int J Mol Sci, 2019, 20(4): 895. doi:10.3390/ijms20040895.
doi: 10.3390/ijms20040895 URL |
[43] |
Yan S, Shen H, Lian Q, et al. Deficiency of the AIM2-ASC Signal Uncovers the STING-Driven Overreactive Response of Type Ⅰ IFN and Reciprocal Depression of Protective IFN-γ Immunity in Mycobacterial Infection. J Immunol, 2018, 200(3): 1016-1026. doi:10.4049/jimmunol.1701177.
doi: 10.4049/jimmunol.1701177 |
[44] |
Wang B, Tian Y, Yin Q. AIM2 Inflammasome Assembly and Signaling. Adv Exp Med Biol, 2019, 1172: 143-155. doi:10.1007/978-981-13-9367-9_7.
doi: 10.1007/978-981-13-9367-9_7 pmid: 31628655 |
[45] |
Jin T, Perry A, Jiang J, et al. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity, 2012, 36(4): 561-571. doi:10.1016/j.immuni.2012.02.014.
doi: 10.1016/j.immuni.2012.02.014 URL |
[46] |
Theobald DL, Mitton-Fry RM, Wuttke DS. Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct, 2003, 32: 115-133. doi:10.1146/annurev.biophys.32.110601.142506.
doi: 10.1146/annurev.biophys.32.110601.142506 URL |
[47] |
Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol, 2010, 11(11): 997-1004. doi:10.1038/ni.1932.
doi: 10.1038/ni.1932 pmid: 20890285 |
[48] |
Ramakrishna K, Premkumar K, Kabeerdoss J, et al. Impaired toll like receptor 9 response in pulmonary tuberculosis. Cytokine, 2017, 90: 38-43. doi:10.1016/j.cyto.2016.10.006.
doi: S1043-4666(16)30547-6 pmid: 27768958 |
[49] |
Jo EK, Yang CS, Choi CH, et al. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol, 2007, 9(5): 1087-1098. doi:10.1111/j.1462-5822.2007.00914.x.
doi: 10.1111/j.1462-5822.2007.00914.x URL |
[50] |
Pompei L, Jang S, Zamlynny B, et al. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J Immunol, 2007, 178(8): 5192-5199. doi:10.4049/jimmunol.178.8.5192.
doi: 10.4049/jimmunol.178.8.5192 pmid: 17404302 |
[51] |
Bafica A, Scanga CA, Feng CG, et al. TLR9 regulates Th 1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med, 2005, 202(12): 1715-1724. doi:10.1084/jem.20051782.
doi: 10.1084/jem.20051782 pmid: 16365150 |
[52] |
Simmons DP, Canaday DH, Liu Y, et al. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type Ⅰ IFN and class Ⅰ MHC antigen cross processing by TLR9. J Immunol, 2010, 185(4): 2405-2415. doi:10.4049/jimmunol.0904005.
doi: 10.4049/jimmunol.0904005 pmid: 20660347 |
[53] |
Liu YC, Simmons DP, Li X, et al. TLR2 signaling depletes IRAK1 and inhibits induction of type Ⅰ IFN by TLR7/9. J Immunol, 2012, 188(3): 1019-1026. doi:10.4049/jimmunol.1102181.
doi: 10.4049/jimmunol.1102181 pmid: 22227568 |
[54] |
Watson RO, Bell SL, MacDuff DA, et al. The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type Ⅰ Interferons and Activate Autophagy. Cell Host Microbe, 2015, 17(6): 811-819. doi:10.1016/j.chom.2015.05.004.
doi: 10.1016/j.chom.2015.05.004 URL |
[55] |
Cheng Y, Schorey JS. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med, 2018, 215(11): 2919-2935. doi:10.1084/jem.20180508.
doi: 10.1084/jem.20180508 URL |
[56] |
Saiga H, Kitada S, Shimada Y, et al. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol, 2012, 24(10): 637-644. doi:10.1093/intimm/dxs062.
doi: 10.1093/intimm/dxs062 URL |
[57] |
Cubillos-Angulo JM, Arriaga MB, Melo MGM, et al. Polymorphisms in interferon pathway genes and risk of Mycobacterium tuberculosis infection in contacts of tuberculosis cases in Brazil. Int J Infect Dis, 2020, 92: 21-28. doi:10.1016/j.ijid.2019.12.013.
doi: S1201-9712(19)30486-2 pmid: 31843671 |
[58] |
Mahla RS, Reddy MC, Prasad DV, et al. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol, 2013, 4: 248. doi:10.3389/fimmu.2013.00248.
doi: 10.3389/fimmu.2013.00248 pmid: 24032031 |
[59] |
Zhang Y, Li Y, Li H, et al. DHX36, BAX, and ARPC1B May Be Critical for the Diagnosis and Treatment of Tuberculosis. Can Respir J, 2020, 2020: 4348371. doi:10.1155/2020/4348371.
doi: 10.1155/2020/4348371 |
[60] |
Cervantes JL, Oak E, Garcia J, et al. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis(Edinb), 2019, 116S: S131-S137. doi:10.1016/j.tube.2019.04.021.
doi: 10.1016/j.tube.2019.04.021 |
[61] |
Zhang BZ, Cai J, Yu B, et al. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. BMC Infect Dis, 2016, 16(1): 596. doi:10.1186/s12879-016-1924-1.
doi: 10.1186/s12879-016-1924-1 URL |
[62] |
Lim M, Badruddoza AZM, Firdous J, et al. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics, 2020, 12(1): 30. doi:10.3390/pharmaceutics12010030.
doi: 10.3390/pharmaceutics12010030 URL |
[63] |
Changhong S, Hai Z, Limei W, et al. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Tuberculosis(Edinb), 2009, 89(1): 54-61. doi:10.1016/j.tube.2008.09.005.
doi: 10.1016/j.tube.2008.09.005 |
[64] |
Kita Y, Hashimoto S, Nakajima T, et al. Novel therapeutic vaccines [(HSP65+IL-12)DNA-, granulysin- and Ksp37-vaccine] against tuberculosis and synergistic effects in the combination with chemotherapy. Hum Vaccin Immunother, 2013, 9(3): 526-533. doi:10.4161/hv.23230.
doi: 10.4161/hv.23230 URL |
[65] |
Mobed A. DNA Based Vaccines against Mycobacterium tuberculosis: Recent Progress in Vaccine Development and Delivery System. Iran J Immunol, 2020, 17(4): 255-274. doi:10.22034/iji.2020.87480.1806.
doi: 10.22034/iji.2020.87480.1806 |
[66] |
Huygen K. On the use of DNA vaccines for the prophylaxis of mycobacterial diseases. Infect Immun, 2003, 71(4): 1613-1621. doi:10.1128/IAI.71.4.1613-1621.2003.
doi: 10.1128/IAI.71.4.1613-1621.2003 pmid: 12654772 |
[67] |
Pollock NR, Macintyre AT, Blauwkamp TA, et al. Detection of Mycobacterium tuberculosis cell-free DNA to diagnose TB in pediatric and adult patients. Int J Tuberc Lung Dis, 2021, 25(5): 403-405. doi:10.5588/ijtld.21.0055.
doi: 10.5588/ijtld.21.0055 pmid: 33977910 |
[68] |
Pan SW, Su WJ, Chan YJ, et al. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One, 2021, 16(6): e0253879. doi:10.1371/journal.pone.0253879.
doi: 10.1371/journal.pone.0253879 |
[69] |
Yu G, Shen Y, Ye B, et al. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: A systematic review and meta-analysis. PLoS One, 2021, 16(6): e0253658. doi:10.1371/journal.pone.0253658.
doi: 10.1371/journal.pone.0253658 |
[70] |
Oreskovic A, Waalkes A, Holmes EA, et al. Characterizing the molecular composition and diagnostic potential of Mycobacterium tuberculosis urinary cell-free DNA using next-generation sequencing. Int J Infect Dis, 2021, 112: 330-337. doi:10.1016/j.ijid.2021.09.042.
doi: 10.1016/j.ijid.2021.09.042 pmid: 34562627 |
[71] |
Tang YW, Ellis NM, Hopkins MK, et al. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol, 1998, 36(12): 3674-3679. doi:10.1128/JCM.36.12.3674-3679.1998.
doi: 10.1128/JCM.36.12.3674-3679.1998 pmid: 9817894 |
[72] |
Click ES, Murithi W, Ouma GS, et al. Detection of Apparent Cell-free M.tuberculosis DNA from Plasma. Sci Rep, 2018, 8(1): 645. doi:10.1038/s41598-017-17683-6.
doi: 10.1038/s41598-017-17683-6 pmid: 29330384 |
[73] |
Fernández-Carballo BL, Broger T, Wyss R, et al. Toward the Development of a Circulating Free DNA-Based In Vitro Diagnostic Test for Infectious Diseases: a Review of Evidence for Tuberculosis. J Clin Microbiol, 2019, 57(4): e01234-18. doi:10.1128/JCM.01234-18.
doi: 10.1128/JCM.01234-18 |
[1] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[2] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[3] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[4] | 石红雨, 张国良, 肖国辉. 单细胞转录组测序技术在结核病研究中的应用[J]. 中国防痨杂志, 2025, 47(3): 362-368. |
[5] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[6] | 刘瑞花, 萨日娜, 王芙蓉. 肺癌与肺结核在疾病发生与发展中相互影响的研究进展[J]. 中国防痨杂志, 2025, 47(1): 102-111. |
[7] | 张国钦, 曲婷, 孟庆琳, 周林, 刘二勇. 我国结核病合并HIV/AIDS双重感染防治策略的实施进展[J]. 中国防痨杂志, 2025, 47(1): 12-17. |
[8] | 付宝慧, 张静. 冬虫夏草菌联合抗结核治疗肺结核的效果观察[J]. 中国防痨杂志, 2024, 46(S2): 52-54. |
[9] | 余翔, 王雪梅. 卷曲霉素联合左氧氟沙星治疗复治涂阳肺结核的疗效[J]. 中国防痨杂志, 2024, 46(S2): 104-105. |
[10] | 韦忠灵, 李志峰, 凌学敏, 蒙夏艳, 杨巧妙, 黄小霞, 何华伟. 支气管镜综合介入治疗对中央气道狭窄型支气管结核患者肺功能和免疫功能影响的观察[J]. 中国防痨杂志, 2024, 46(S2): 213-215. |
[11] | 张建桥, 刘玲俊, 陈丹华, 孔萍萍. 早期肠内营养护理在老年重症肺炎患者的应用效果[J]. 中国防痨杂志, 2024, 46(S2): 396-398. |
[12] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[13] | 吴国威, 王永存, 杨志雄. 肺动脉内膜肉瘤一例[J]. 中国防痨杂志, 2024, 46(S2): 548-550. |
[14] | 张德欣, 金烈. IgG4相关肾病合并肺部感染二例并文献复习[J]. 中国防痨杂志, 2024, 46(S2): 553-555. |
[15] | 曾坚, 王瑾, 方木通, 傅佳鹏, 卢水华. 12例艾滋病患者泌尿系结核的临床特征分析[J]. 中国防痨杂志, 2024, 46(S1): 33-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||