中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (3): 294-298.doi: 10.19982/j.issn.1000-6621.20210646
收稿日期:
2021-11-12
出版日期:
2022-03-10
发布日期:
2022-03-08
通信作者:
李晓非
E-mail:1971069866@qq.com
基金资助:
Received:
2021-11-12
Online:
2022-03-10
Published:
2022-03-08
Contact:
LI Xiao-fei
E-mail:1971069866@qq.com
Supported by:
摘要:
随着医学科学技术的不断发展,特别是精准诊疗时代的来临,分子生物学检测技术在结核病早期诊断辅助方面受到广泛重视和应用。分子生物学检测技术具有准确、高效、高通量等优点,为结核病的诊疗及疫情的防控带来了新曙光。本文中,笔者综合国内外学者研究成果,阐述了基于核酸扩增试验技术、核酸分子杂交技术、基因测序的结核病检测及药物敏感性分析技术和其他新型结核病检测技术的应用现状及其最新研究进展,以期为结核病的辅助诊断提供参考。
中图分类号:
樊茹, 李晓非. 结核病分子生物学检测技术研究进展[J]. 中国防痨杂志, 2022, 44(3): 294-298. doi: 10.19982/j.issn.1000-6621.20210646
FAN Ru, LI Xiao-fei. Research progress of molecular biology detection technology for tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(3): 294-298. doi: 10.19982/j.issn.1000-6621.20210646
[1] |
Daley CL. The Global Fight Against Tuberculosis. Thorac Surg Clin, 2019, 29(1):19-25. doi: 10.1016/j.thorsurg.2018.09.010.
doi: 10.1016/j.thorsurg.2018.09.010 URL |
[2] | 严芝光, 周丽. 结核杆菌实验室检测技术与临床应用进展. 临床检验杂志(电子版), 2017, 6(4):826-828. |
[3] |
姜世闻. 《结核病分类》和《肺结核诊断》新标准对结核病控制工作的影响. 中国防痨杂志, 2018, 40(3):229-230. doi: 10.3969/j.issn.1000-6621.2018.03.001.
doi: 10.3969/j.issn.1000-6621.2018.03.001 |
[4] |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep, 2020, 47(5):4065-4075. doi: 10.1007/s11033-020-05413-7.
doi: 10.1007/s11033-020-05413-7 URL |
[5] |
Zifodya JS, Kreniske JS, Schiller I, et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev, 2021, 2:CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[6] |
Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6): CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[7] |
Kay AW, González Fernández L, Takwoingi Y, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst Rev, 2020, 8(8): CD013359. doi: 10.1002/14651858.CD013359.
doi: 10.1002/14651858.CD013359 |
[8] |
Shapiro AE, Ross JM, Yao M, et al. Xpert MTB/RIF and Xpert Ultra assays for screening for pulmonary tuberculosis and rifampicin resistance in adults, irrespective of signs or symptoms. Cochrane Database Syst Rev, 2021, 3(3):CD013694. doi: 10.1002/14651858.CD013694.
doi: 10.1002/14651858.CD013694 |
[9] |
韩利军, 赵雪瑶. 结核性脑膜炎脑脊液分子检测技术概述. 结核与肺部疾病杂志, 2021, 2(1):8-12. doi: 10.3969/j.issn.2096-8493.2021.01.003.
doi: 10.3969/j.issn.2096-8493.2021.01.003 |
[10] | World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children. Geneva: World Health Organization, 2014. |
[11] |
Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2021, 19(1):65-77. doi: 10.1080/14787210.2020.1810565.
doi: 10.1080/14787210.2020.1810565 URL |
[12] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[13] |
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 2018, 18(1):76-84. doi: 10.1016/S1473-3099(17)30691-6.
doi: S1473-3099(17)30691-6 pmid: 29198911 |
[14] |
Jiang J, Yang J, Shi Y, et al. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infect Dis (Lond), 2020, 52(11):763-775. doi: 10.1080/23744235.2020.1788222.
doi: 10.1080/23744235.2020.1788222 |
[15] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2020. |
[16] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020, 58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 |
[17] |
Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur Respir J, 2021, 58(5):2100526. doi: 10.1183/13993003.00526-2021.
doi: 10.1183/13993003.00526-2021 URL |
[18] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization, 2020. |
[19] |
Gomathi NS, Singh M, Singh UB, et al. Multicentric validation of indigenous molecular test Truenat MTB for detection of Mycobacterium tuberculosis in sputum samples from presumptive pulmonary tuberculosis patients in comparison with reference standards. Indian J Med Res, 2020, 152(4):378-385. doi: 10.4103/ijmr.IJMR_2539_19.
doi: 10.4103/ijmr.IJMR_2539_19 pmid: 33380702 |
[20] | World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization, 2016. |
[21] |
林晶晶, 夏露, 刘旭晖, 等. 环介导等温扩增技术用于结核病诊断的价值评估. 复旦学报(医学版), 2021, 48(1):104-110. doi: 10.3969/j.issn.1672-8467.2021.01.016.
doi: 10.3969/j.issn.1672-8467.2021.01.016 |
[22] |
Wu D, Kang J, Li B, et al. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis. J Clin Lab Anal, 2018, 32(4):e22326. doi: 10.1002/jcla.22326.
doi: 10.1002/jcla.22326 URL |
[23] |
Yadav R, Daroch P, Gupta P, et al. Diagnostic accuracy of TB-LAMP assay in patients with pulmonary tuberculosis-a case-control study in northern India. Pulmonology, 2020, 5:S2531-0437(20)30224-5. doi: 10.1016/j.pulmoe.2020.10.007.
doi: 10.1016/j.pulmoe.2020.10.007 |
[24] |
Bojang AL, Mendy FS, Tientcheu LD, et al. Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in The Gambia. J Infect, 2016, 72(3):332-337. doi: 10.1016/j.jinf.2015.11.011.
doi: 10.1016/j.jinf.2015.11.011 pmid: 26724771 |
[25] |
Joon D, Nimesh M, Varma-Basil M, et al. Evaluation of improved IS6110 LAMP assay for diagnosis of pulmonary and extra pulmonary tuberculosis. J Microbiol Methods, 2017, 139:87-91. doi: 10.1016/j.mimet.2017.05.007.
doi: 10.1016/j.mimet.2017.05.007 URL |
[26] |
徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020, 24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023.
doi: 10.3969/j.issn.1009-6469.2020.12.023 |
[27] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. Geneva: World Health Organization, 2008. |
[28] |
Nathavitharana RR, Cudahy PG, Schumacher SG, et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2017, 49(1):1601075. doi: 10.1183/13993003.01075-2016.
doi: 10.1183/13993003.01075-2016 URL |
[29] | World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Geneva: World Health Organization, 2016. |
[30] |
Singh BK, Sharma SK, Sharma R, et al. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS One, 2017, 12(8):e182988. doi: 10.1371/journal.pone.0182988.
doi: 10.1371/journal.pone.0182988 |
[31] |
许璐, 孙一鑫, 詹思延. 线性探针技术诊断耐药肺结核准确性的Meta分析. 中华流行病学杂志, 2018, 39(11):1491-1495. doi: 10.3760/cma.j.issn.0254-6450.2018.11.014.
doi: 10.3760/cma.j.issn.0254-6450.2018.11.014 |
[32] |
李俊明, 徐炜. 结核病的分子诊断——进展与挑战. 实验与检验医学, 2020, 38(6):1039-1046, 1066. doi: 10.3969/j.issn.1674-1129.2020.06.001.
doi: 10.3969/j.issn.1674-1129.2020.06.001 |
[33] |
Votintseva AA, Bradley P, Pankhurst L, et al. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol, 2017, 55(5):1285-1298. doi: 10.1128/JCM.02483-16.
doi: 10.1128/JCM.02483-16 pmid: 28275074 |
[34] |
Amlerova J, Bitar I, Hrabak J. Genotyping of Mycobacterium tuberculosis using whole genome sequencing. Folia Microbiol (Praha), 2018, 63(5):537-545. doi: 10.1007/s12223-018-0599-y.
doi: 10.1007/s12223-018-0599-y URL |
[35] |
Gautam SS, Mac AM, Cooley LA, et al. Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One, 2018, 13(2):e192351. doi: 10.1371/journal.pone.0192351.
doi: 10.1371/journal.pone.0192351 |
[36] |
林爱清, 张璐, 成宝涛, 等. 二代测序技术应用于脑脊液检测在结核性脑膜炎中的早期诊断价值. 中华实验和临床感染病杂志(电子版), 2020, 14(4):291-295. doi: 10.3877/cma.j.issn.1674-1358.2020.04.005.
doi: 10.3877/cma.j.issn.1674-1358.2020.04.005 |
[37] |
Zhao M, Tang K, Liu F, et al. Metagenomic Next-Generation Sequencing Improves Diagnosis of Osteoarticular Infections From Abscess Specimens: A Multicenter Retrospective Study. Front Microbiol, 2020, 11:2034. doi: 10.3389/fmicb.2020.02034.
doi: 10.3389/fmicb.2020.02034 URL |
[38] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4):567-574. doi: 10.1016/j.jinf.2020.08.004.
doi: 10.1016/j.jinf.2020.08.004 URL |
[39] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019, 9:351. doi: 10.3389/fcimb.2019.00351.
doi: 10.3389/fcimb.2019.00351 URL |
[40] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob, 2019, 18(1):2. doi: 10.1186/s12941-018-0300-y.
doi: 10.1186/s12941-018-0300-y URL |
[41] |
辜吉秀, 李晴, 马玲, 等. 高通量二代测序技术在耐药结核病诊断中的应用. 中国防痨杂志, 2020, 42(11):1203-1208. doi: 10.3969/j.issn.1000-6621.2020.11.011.
doi: 10.3969/j.issn.1000-6621.2020.11.011 |
[42] |
Lee RS, Pai M. Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet?. J Clin Microbiol, 2017, 55(5):1249-1254. doi: 10.1128/JCM.00358-17.
doi: 10.1128/JCM.00358-17 URL |
[43] |
Horita N, Yamamoto M, Sato T, et al. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberculosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep, 2015, 5:18113. doi: 10.1038/srep18113.
doi: 10.1038/srep18113 URL |
[44] |
Park JE, Huh HJ, Koh WJ, et al. Performance evaluation of the Cobas TaqMan MTB assay on respiratory specimens according to clinical application. Int J Infect Dis, 2017, 64:42-46. doi: 10.1016/j.ijid.2017.08.014.
doi: 10.1016/j.ijid.2017.08.014 URL |
[45] |
Bloemberg GV, Voit A, Ritter C, et al. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol, 2013, 51(7):2112-2117. doi: 10.1128/JCM.00142-13.
doi: 10.1128/JCM.00142-13 pmid: 23616457 |
[46] |
逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[47] |
Sağıroğlu P, Atalay MA. Evaluation of the performance of the BD MAX MDR-TB test in the diagnosis of Mycobacterium tuberculosis complex in extrapulmonary and pulmonary samples. Expert Rev Mol Diagn, 2021, 21(12):1361-1367. doi: 10.1080/14737159.2021.1997594.
doi: 10.1080/14737159.2021.1997594 URL |
[48] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020, 22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: S1525-1578(20)30396-2 pmid: 32688054 |
[49] |
Shah M, Paradis S, Betz J, et al. Multicenter Study of the Accuracy of the BD MAX Multidrug-resistant Tuberculosis Assay for Detection of Mycobacterium tuberculosis Complex and Mutations Associated With Resistance to Rifampin and Isoniazid. Clin Infect Dis, 2020, 71(5):1161-1167. doi: 10.1093/cid/ciz932.
doi: 10.1093/cid/ciz932 URL |
[50] |
Borrás R, Martínez V, Vinuesa V, et al. Field performance of the Abbott RealTime MTB assay for the diagnosis of extrapulmonary tuberculosis in a low-prevalence setting. Enferm Infecc Microbiol Clin (Engl Ed), 2020, 38(5):206-211. doi: 10.1016/j.eimc.2019.08.007.
doi: 10.1016/j.eimc.2019.08.007 |
[51] |
Hofmann-Thiel S, Molodtsov N, Duffner C, et al. Capacity of Abbott RealTime MTB RIF/INH to detect rifampicin- and isoniazid-resistant tuberculosis. Int J Tuberc Lung Dis, 2019, 23(4):458-464. doi: 10.5588/ijtld.18.0615.
doi: 10.5588/ijtld.18.0615 pmid: 31064625 |
[52] |
Kohli M, MacLean E, Pai M, et al. Diagnostic accuracy of centralised assays for TB detection and detection of resistance to rifampicin and isoniazid: a systematic review and meta-analysis. Eur Respir J, 2021, 57(2):2000747. doi: 10.1183/13993003.00747-2020.
doi: 10.1183/13993003.00747-2020 URL |
[53] |
Scott L, David A, Noble L, et al. Performance of the Abbott RealTime MTB and MTB RIF/INH Assays in a Setting of High Tuberculosis and HIV Coinfection in South Africa. J Clin Microbiol, 2017, 55(8):2491-2501. doi: 10.1128/JCM.00289-17.
doi: 10.1128/JCM.00289-17 URL |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 石玉如, 谷德健, 吴静, 刘婷, 秦令寒, 岳莉, 戚应杰. 靶向捕获测序技术和宏基因组二代测序技术检测肺泡灌洗液中结核分枝杆菌的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 305-311. |
[3] | 贾辉, 景辉, 凌晓洁, 王燕, 李学政. GeneXpert MTB/RIF Ultra检测痰液样本对新发肺结核的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 298-304. |
[4] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[5] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[6] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[7] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[8] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[9] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[10] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[11] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[12] | 王怡婷, 孟祥莉, 付茵, 曹晓龙, 郑惠文, 贺文从, 宋泽萱, 赵雁林. 宏基因组测序应用于结核病防治的研究进展[J]. 中国防痨杂志, 2024, 46(8): 976-981. |
[13] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[14] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[15] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||