中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (8): 880-884.doi: 10.3969/j.issn.1000-6621.2020.08.019
• 综述 • 上一篇
收稿日期:2020-04-22
出版日期:2020-08-10
发布日期:2020-08-10
通信作者:
王桂荣
E-mail:wangguirong1230@ccmu.edu.cn
基金资助:
SUN Qing, HUANG Hai-rong, WANG Gui-rong(
)
Received:2020-04-22
Online:2020-08-10
Published:2020-08-10
Contact:
WANG Gui-rong
E-mail:wangguirong1230@ccmu.edu.cn
摘要:
近年来,非结核分枝杆菌(non-tuberculous mycobacteria, NTM)引起的感染呈逐渐上升趋势,严重威胁人类健康。NTM致病的菌种繁多,不同菌种NTM对药品的敏感性各异,使其治疗存在较大困难。因此,寻找NTM病治疗效果较佳的药品非常有必要。NTM种属分布常具有地域特点,在多数地区鸟-胞内分枝杆菌复合群、脓肿分枝杆菌和堪萨斯分枝杆菌为较常见的致病菌种。贝达喹啉(bedaquiline, Bdq)、氯法齐明(clofazimine,Cfz)及德拉马尼(delamanid,Dlm)因对治疗NTM病体现出了良好的治疗潜力而受到泛关注。为了提高对抗NTM药品敏感性及耐药机制的认识,作者就Bdq、Cfz和Dlm对以上常见致病性NTM的体外抑菌活性及耐药相关机制进行综述。
孙晴, 黄海荣, 王桂荣. 贝达喹啉、氯法齐明和德拉马尼对常见致病性非结核分枝杆菌体外抑菌活性及耐药机制的研究进展[J]. 中国防痨杂志, 2020, 42(8): 880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019
SUN Qing, HUANG Hai-rong, WANG Gui-rong. In vitro activities and drug resistance mechanisms of bedaquiline, clofazimine and delamanid against common pathogenic non-tuberculous mycobacteria[J]. Chinese Journal of Antituberculosis, 2020, 42(8): 880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019
| [1] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014,18(11):1370-1377. doi: 10.5588/ijtld.14.0120.
doi: 10.5588/ijtld.14.0120 URL pmid: 25299873 |
| [2] |
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis, 2016,45:123-134. doi: 10.1016/j.ijid.2016.03.006.
URL pmid: 26976549 |
| [3] |
Singh P, Kumari R, Lal R. Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian J Microbiol, 2017,57(4):371-377. doi: 10.1007/s12088-017-0674-0.
URL pmid: 29151636 |
| [4] |
Patel RV, Riyaz SD, Park SW. Bedaquiline: a new hope to treat multi-drug resistant tuberculosis. Curr Top Med Chem, 2014,14(16):1866-1874. doi: 10.2174/156802661466614092 9114822.
doi: 10.2174/1568026614666140929114822 URL pmid: 25262806 |
| [5] |
Yu X, Gao X, Li C, et al. In Vitro Activities of Bedaquiline and Delamanid against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2019,63(8):e00031-19. doi: 10.1128/AAC.00031-19.
doi: 10.1128/AAC.00031-19 URL pmid: 31138571 |
| [6] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17. doi: 10.1128/AAC.00900-17.
URL pmid: 28739779 |
| [7] |
Kim DH, Jhun BW, Moon SM, et al. In Vitro Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates. Antimicrob Agents Chemother, 2019,63(8):e00665-19. doi: 10.1128/AAC.00665-19.
doi: 10.1128/AAC.00665-19 URL pmid: 31182533 |
| [8] |
DeStefano MS, Shoen CM, Cynamon MH. Therapy for Mycobacterium kansasii Infection: Beyond 2018. Front Microbiol, 2018,9:2271. doi: 10.3389/fmicb.2018.02271.
doi: 10.3389/fmicb.2018.02271 URL pmid: 30319580 |
| [9] |
Brown-Elliott BA, Philley JV, Griffith DE, et al. In Vitro Susceptibility Testing of Bedaquiline against Mycobacterium avium Complex. Antimicrob Agents Chemother, 2017,61(2):e01798-16. doi: 10.1128/AAC.01798-16.
doi: 10.1128/AAC.01798-16 URL pmid: 27872065 |
| [10] |
Li B, Ye M, Guo Q, et al. Determination of MIC Distribution and Mechanisms of Decreased Susceptibility to Bedaquiline among Clinical Isolates of Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00175-18. doi: 10.1128/AAC.00175-18.
doi: 10.1128/AAC.00175-18 URL pmid: 29712658 |
| [11] |
Dupont C, Viljoen A, Thomas S, et al. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and is Effective in Infected Zebrafish. Antimicrob Agents Chemother, 2017,61(11):e01225-17. doi: 10.1128/AAC.01225-17.
doi: 10.1128/AAC.01225-17 URL pmid: 28807917 |
| [12] |
Huh HJ, Kim SY, Jhun BW, et al. Recent advances in mole-cular diagnostics and understanding mechanisms of drug resis-tance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019,72:169-182. doi: 10.1016/j.meegid.2018.10.003.
doi: 10.1016/j.meegid.2018.10.003 URL pmid: 30315892 |
| [13] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005,307(5707):223-227. doi: 10.1126/science.1106753.
doi: 10.1126/science.1106753 URL pmid: 15591164 |
| [14] |
Aguilar-Ayala DA, Cnockaert M, André E, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol, 2017,66(8):1140-1143. doi: 10.1099/jmm.0.000537.
doi: 10.1099/jmm.0.000537 URL pmid: 28749330 |
| [15] |
Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem, 2014,289(23):16526-16540. doi: 10.1074/jbc.M113.538959.
doi: 10.1074/jbc.M113.538959 URL pmid: 24737322 |
| [16] |
Alexander DC, Vasireddy R, Vasireddy S, et al. Emergence of mmpT5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol, 2017,55(2):574-584. doi: 10.1128/JCM.02087-16.
doi: 10.1128/JCM.02087-16 URL pmid: 27927925 |
| [17] |
Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,63(1):e01316-18. doi: 10.1128/AAC.01316-18.
doi: 10.1128/AAC.01316-18 URL pmid: 30323043 |
| [18] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018,105:1353-1359. doi: 10.1016/j.biopha.2018.06.023.
doi: 10.1016/j.biopha.2018.06.023 URL pmid: 30021373 |
| [19] |
Luo J, Yu X, Jiang G, et al. In Vitro Activity of Clofazimine against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2018,62(7):e00072-18. doi: 10.1128/AAC.00072-18.
doi: 10.1128/AAC.00072-18 URL pmid: 29760127 |
| [20] |
Li G, Pang H, Guo Q, et al. Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria. Int J Antimicrob Agents, 2017,49(3):364-374. doi: 10.1016/j.ijantimicag.2016.10.024.
doi: 10.1016/j.ijantimicag.2016.10.024 URL pmid: 28131606 |
| [21] |
van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents, 2010,35(2):169-173. doi: 10.1016/j.ijantimicag.2009.09.023.
doi: 10.1016/j.ijantimicag.2009.09.023 URL pmid: 20006470 |
| [22] |
Shen Y, Wang X, Jin J, et al. In Vitro Susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum Isolates to 30 Antibiotics. Biomed Res Int, 2018,2018:4902941. doi: 10.1155/2018/4902941.
doi: 10.1155/2018/4902941 URL pmid: 30687747 |
| [23] |
Huang CC, Wu MF, Chen HC, et al. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect, 2018,51(5):636-643. doi: 10.1016/j.jmii.2017.05.001.
doi: 10.1016/j.jmii.2017.05.001 URL pmid: 28705770 |
| [24] |
Shen GH, Wu BD, Hu ST, et al. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents, 2010,35(4):400-404. doi: 10.1016/j.ijantimicag.2009.12.008.
doi: 10.1016/j.ijantimicag.2009.12.008 URL pmid: 20138481 |
| [25] |
Ismail N, Peters RPH, Ismail NA, et al. Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. Antimicrob Agents Chemother, 2019,63(3):e02141-18. doi: 10.1128/AAC.02141-18.
doi: 10.1128/AAC.02141-18 URL pmid: 30642938 |
| [26] |
Chen Y, Chen J, Zhang S, et al. Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00544-18. doi: 10.1128/AAC.00544-18.
doi: 10.1128/AAC.00544-18 URL pmid: 29712660 |
| [27] |
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015,75(1):91-100. doi: 10.1007/s40265-014-0331-4.
doi: 10.1007/s40265-014-0331-4 URL pmid: 25404020 |
| [28] |
Bashiri G, Rehan AM, Greenwood DR, et al. Metabolic engi-neering of cofactor F420 production in Mycobacterium smegmatis. PLoS One, 2010,5(12):e15803. doi: 10.1371/journal.pone.0015803.
doi: 10.1371/journal.pone.0015803 URL pmid: 21209917 |
| [29] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006. |
| [30] | Brown-Elliott BA, Rubio A, Wallace RJ Jr. In Vitro Susceptibility Testing of a Novel Benzimidazole, SPR719, against Nontuberculous Mycobacteria. Antimicrob Agents Chemo-ther, 2018,62(11):e01503-18. doi: 10.1128/AAC.01503-18. |
| [31] |
Cho EH, Huh HJ, Song DJ, et al. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J Infect Chemother, 2018,24(4):315-318. doi: 10.1016/j.jiac.2017.10.022.
doi: 10.1016/j.jiac.2017.10.022 URL pmid: 29223615 |
| [32] |
Litvinov V, Makarova M, Galkina K, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS One, 2018,13(9):e0203108. doi: 10.1371/journal.pone.0203108.
doi: 10.1371/journal.pone.0203108 URL pmid: 30222736 |
| [33] |
Heidarieh P, Mirsaeidi M, Hashemzadeh M, et al. In Vitro Antimicrobial Susceptibility of Nontuberculous Mycobacteria in Iran. Microb Drug Resist, 2016,22(2):172-178. doi: 10.1089/mdr.2015.0134.
doi: 10.1089/mdr.2015.0134 URL pmid: 26468990 |
| [34] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007,175(4):367-416. doi: 10.1164/rccm.200604-571ST.
doi: 10.1164/rccm.200604-571ST URL pmid: 17277290 |
| [35] |
van Ingen J, Kuijper EJ. Drug susceptibility testing of nontuberculous mycobacteria. Future Microbiol, 2014,9(9):1095-1110. doi: 10.2217/fmb.14.60.
doi: 10.2217/fmb.14.60 URL pmid: 25340838 |
| [36] |
Jarand J, Davis JP, Cowie RL, et al. Long-term Follow-up of Mycobacterium avium Complex Lung Disease in Patients Treated With Regimens Including Clofazimine and/or Rifampin. Chest, 2016,149(5):1285-1293. doi: 10.1378/chest.15-0543.
doi: 10.1378/chest.15-0543 URL pmid: 26513209 |
| [37] |
Nie W, Duan H, Huang H, et al. Species Identification and Clarithromycin Susceptibility Testing of 278 Clinical Nontuberculosis Mycobacteria Isolates. Biomed Res Int, 2015,2015:506598. doi: 10.1155/2015/506598.
doi: 10.1155/2015/506598 URL pmid: 26146620 |
| [38] |
Ananta P, Kham-Ngam I, Chetchotisakd P, et al. Analysis of drug-susceptibility patterns and gene sequences associated with clarithromycin and amikacin resistance in serial Mycobacterium abscessus isolates from clinical specimens from Northeast Thailand. PLoS One, 2018,13(11):e0208053. doi: 10.1371/journal.pone.0208053
doi: 10.1371/journal.pone.0208053 URL pmid: 30496270 |
| [39] |
Lavollay M, Dubée V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect, 2014,20(5):O297-O300. doi: 10.1111/1469-0691.12405.
doi: 10.1111/1469-0691.12405 URL pmid: 24112243 |
| [40] |
Cho EH, Huh HJ, Song DJ, et al. Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens. Diagn Microbiol Infect Dis, 2019,93(2):107-111. doi: 10.1016/j.diagmicrobio.2018.08.008.
doi: 10.1016/j.diagmicrobio.2018.08.008 URL pmid: 30236529 |
| [41] |
Zhang Z, Lu J, Song Y, et al. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis, 2018,90(1):31-34. doi: 10.1016/j.diagmicrobio.2017.09.013.
doi: 10.1016/j.diagmicrobio.2017.09.013 URL pmid: 29089153 |
| [42] |
Hatakeyama S, Ohama Y, Okazaki M, et al. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis, 2017,17(1):197. doi: 10.1186/s12879-017-2298-8.
doi: 10.1186/s12879-017-2298-8 URL pmid: 28270102 |
| [43] |
Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrob Agents Chemother, 2015,60(2):1097-1105. doi: 10.1128/AAC.02615-15.
doi: 10.1128/AAC.02615-15 URL pmid: 26643335 |
| [44] |
Yang B, Jhun BW, Moon SM, et al. Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother, 2017,61(6):e02052-16. doi: 10.1128/AAC.02052-16.
doi: 10.1128/AAC.02052-16 URL pmid: 28348153 |
| [1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
| [2] | 李琦, 王宇津, 王雪钰, 初乃惠, 聂文娟. 新型化合物舒达吡啶与克拉霉素药物代谢相互作用机制研究[J]. 中国防痨杂志, 2025, 47(2): 142-149. |
| [3] | 张超, 于霞, 黄海荣, 刘伟, 刘涛. 七氟烷对结核分枝杆菌体外抑菌效果的评价[J]. 中国防痨杂志, 2025, 47(2): 158-163. |
| [4] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
| [5] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
| [6] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
| [7] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
| [8] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
| [9] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
| [10] | 王健华, 史坤雄, 黄雅欣, 梁葵弟, 梁汉成. GeneXpert MTB/RIF对快速诊断肺结核及检测利福平耐药性的价值分析[J]. 中国防痨杂志, 2024, 46(S1): 94-96. |
| [11] | 陈双双, 田丽丽, 王嫩寒, 杨新宇, 赵琰枫, 李传友, 代小伟. 17种抗生素对北京地区快速生长分枝杆菌体外抑菌效果分析[J]. 中国防痨杂志, 2024, 46(9): 1056-1062. |
| [12] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
| [13] | 于兰, 陈双双, 王嫩寒, 田丽丽, 赵琰枫, 樊瑞芳, 刘海灿, 李传友, 代小伟. 利福平耐药结核分枝杆菌对氟喹诺酮类药物表型耐药与其基因突变的一致性研究[J]. 中国防痨杂志, 2024, 46(8): 942-950. |
| [14] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
| [15] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可