中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (12): 1332-1335.doi: 10.3969/j.issn.1000-6621.2021.12.018
收稿日期:
2021-06-24
出版日期:
2021-12-10
发布日期:
2021-12-01
通信作者:
李传友
E-mail:lichuanyou6688@hotmail.com
基金资助:
YANG Rui-fang*, LI Chuan-you()
Received:
2021-06-24
Online:
2021-12-10
Published:
2021-12-01
Contact:
LI Chuan-you
E-mail:lichuanyou6688@hotmail.com
摘要:
成簇的规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)和他们相关的蛋白(Cas)组成了一个新的分布于结核分枝杆菌(MTB)的获得性免疫防御系统。此外,CRISPR-Cas系统与MTB的毒力、耐药以及定向基因编辑方面可能存在重要的关系。笔者主要通过对CRISPR-Cas系统在MTB的免疫作用及其相关研究进展进行综述,以期为进一步研究MTB致病性和抗结核治疗提供一种新思路。
杨瑞芳, 李传友. CRISPR-Cas系统在结核分枝杆菌研究中的应用进展[J]. 中国防痨杂志, 2021, 43(12): 1332-1335. doi: 10.3969/j.issn.1000-6621.2021.12.018
YANG Rui-fang, LI Chuan-you. Research progress of relationship between CRISPR-Cas system and Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(12): 1332-1335. doi: 10.3969/j.issn.1000-6621.2021.12.018
[1] |
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis, 2021, 74:101574. doi: 10.1016/j.cimid.2020.101574.
doi: 10.1016/j.cimid.2020.101574 URL |
[2] |
Hryhorowicz M, Lipinski D, Zeyland J, et al. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Arch Immunol Ther Exp (Warsz), 2017, 65(3):233-240. doi: 10.1007/s00005-016-0427-5.
doi: 10.1007/s00005-016-0427-5 URL |
[3] |
Liu L, Fan XD. CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol, 2014, 85(3):209-218. doi: 10.1007/s11103-014-0188-7.
doi: 10.1007/s11103-014-0188-7 URL |
[4] |
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1772):20180087. doi: 10.1098/rstb.2018.0087.
doi: 10.1098/rstb.2018.0087 URL |
[5] |
Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems:All the Way There and Back. Genome Biol Evol, 2017, 9(10):2812-2825. doi: 10.1093/gbe/evx192.
doi: 10.1093/gbe/evx192 URL |
[6] |
翟小倩, 鲍朗. CRISPR-Cas系统及其在结核分枝杆菌中的研究进展. 生物学杂志, 2018, 35(1):89-92. doi: 10.3969/j.issn.2095-1736.2018.01.089.
doi: 10.3969/j.issn.2095-1736.2018.01.089 |
[7] |
Wei J, Lu N, Li Z, et al. The Mycobacterium tuberculosis CRISPR-Associated Cas1 Involves Persistence and Tolerance to Anti-Tubercular Drugs. Biomed Res Int, 2019, 2019:7861695. doi: 10.1155/2019/7861695.
doi: 10.1155/2019/7861695 |
[8] |
冯欢欢, 单彩龙, 李金月, 等. CRISPR系统中Cas蛋白的分类及作用机制. 中国病原生物学杂志, 2018, 13(6):652-654, 663. doi: 10.13350/j.cjpb.180624.
doi: 10.13350/j.cjpb.180624 |
[9] |
Chen H, Zhang SD, Chen L, et al. Efficient Genome Editing of Magnetospirillum magneticum AMB-1 by CRISPR-Cas9 System for Analyzing Magnetotactic Behavior. Front Microbiol, 2018, 9:1569. doi: 10.3389/fmicb.2018.01569.
doi: 10.3389/fmicb.2018.01569 URL |
[10] | 黄琴琴. 结核分枝杆菌Cas2(Rv2816c)在胁迫应答及胞内存活中的作用与分子机理. 重庆:西南大学, 2015. |
[11] |
Killelea T, Bolt EL. CRISPR-Cas adaptive immunity and the three Rs. Biosci Rep, 2017, 37(4):BSR20160297. doi: 10.1042/BSR20160297.
doi: 10.1042/BSR20160297 |
[12] |
Plagens A, Richter H, Charpentier E, et al. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev, 2015, 39(3):442-463. doi: 10.1093/femsre/fuv019.
doi: 10.1093/femsre/fuv019 pmid: 25934119 |
[13] |
Wei W, Zhang S, Fleming J, et al. Mycobacterium tuberculosis type Ⅲ-A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB J, 2019, 33(1):1496-1509. doi: 10.1096/fj.201800557RR.
doi: 10.1096/fj.201800557RR URL |
[14] |
Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc, 2013, 8(11):2180-2196. doi: 10.1038/nprot.2013.132.
doi: 10.1038/nprot.2013.132 URL |
[15] |
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2):442-451. doi: 10.1016/j.cell.2013.06.044.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981 |
[16] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183. doi: 10.1016/j.cell.2013.02.022.
doi: 10.1016/j.cell.2013.02.022 URL |
[17] | 刘雅婷. 结核分枝杆菌Cas蛋白表达纯化与功能研究. 郑州:郑州大学, 2012. |
[18] |
Zhang Y, Yang J, Bai G. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. J Bacteriol, 2018, 200(8):e00743-17. doi: 10.1128/JB.00743-17.
doi: 10.1128/JB.00743-17 |
[19] |
Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact, 2020, 19(1):172. doi: 10.1186/s12934-020-01431-z.
doi: 10.1186/s12934-020-01431-z URL |
[20] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32(4):347-355. doi: 10.1038/nbt.2842.
doi: 10.1038/nbt.2842 URL |
[21] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823. doi: 10.1126/science.1231143.
doi: 10.1126/science.1231143 pmid: 23287718 |
[22] |
Li Y, Peng N. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials:Review and Prospects. Front Microbiol, 2019, 10:2471. doi: 10.3389/fmicb.2019.02471.
doi: 10.3389/fmicb.2019.02471 URL |
[23] |
Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio, 2020, 11(1):e02364-19. doi 10.1128/mBio.02364-19.
doi: 10.1128/mBio.02364-19 |
[24] |
Rock J. Tuberculosis drug discovery in the CRISPR era. PLoS Pathog, 2019, 15(9):e1007975. doi: 10.1371/journal.ppat.1007975.
doi: 10.1371/journal.ppat.1007975 URL |
[25] |
Rock JM, Hopkins FF, Chavez A, et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol, 2017, 2:16274. doi: 10.1038/nmicrobiol.2016.274.
doi: 10.1038/nmicrobiol.2016.274 URL |
[26] |
郭越, 赵增祥, 张文姝, 等. 基因编辑调控技术在结核分枝杆菌基因功能研究中的应用进展. 中国病原生物学杂志, 2020, 15(4):483-486. doi: 10.13350/j.cjpb.200425.
doi: 10.13350/j.cjpb.200425 |
[27] |
Singh A, Gaur M, Sharma V, et al. Comparative Genomic Analysis of Mycobacteriaceae Reveals Horizontal Gene Transfer-Mediated Evolution of the CRISPR-Cas System in the Mycobacterium tuberculosis Complex. mSystems, 2021, 6(1):e00934-20. doi: 10.1128/mSystems.00934-20.
doi: 10.1128/mSystems.00934-20 |
[28] |
Zhang S, Li T, Huo Y, et al. Mycobacterium tuberculosis CRISPR/Cas system Csm1 holds clues to the evolutionary relationship between DNA polymerase and cyclase activity. Int J Biol Macromol, 2021, 170:140-149. doi: 10.1016/j.ijbiomac.2020.12.014.
doi: 10.1016/j.ijbiomac.2020.12.014 URL |
[29] |
Gunderson FF, Cianciotto NP. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio, 2013, 4(2):e00074-13. doi: 10.1128/mBio.00074-13.
doi: 10.1128/mBio.00074-13 |
[30] |
Lam JT, Yuen KY, Ho PL, et al. Truncated Rv2820c enhances mycobacterial virulence ex vivo and in vivo. Microb Pathog, 2011, 50(6):331-335. doi: 10.1016/j.micpath.2011.02.008.
doi: 10.1016/j.micpath.2011.02.008 URL |
[31] |
Rindi L, Lari N, Garzelli C. Genes of Mycobacterium tuberculosis H37Rv down regulated in the attenuated strain H37Ra are restricted to M.tuberculosis complex species. New Microbiol, 2001, 24(3):289-294.
pmid: 11497087 |
[32] | 吴晓丽. 结核分枝杆菌Csm3蛋白功能的初步研究. 福州:福建农林大学, 2016. |
[33] |
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13(11):722-736. doi: 10.1038/nrmicro3569.
doi: 10.1038/nrmicro3569 pmid: 26411297 |
[34] |
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr, 2014, 2(2):1-36. doi: 10.1128/microbiolspec.MGM2-0032-2013.
doi: 10.1128/microbiolspec.MGM2-0032-2013 pmid: 25328854 |
[35] |
Ren L, Deng LH, Zhang RP, et al. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung. Medicine (Baltimore), 2017, 96(7):e5922. doi: 10.1097/MD.0000000000005922.
doi: 10.1097/MD.0000000000005922 URL |
[36] |
Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol, 2006, 6:23. doi: 10.1186/1471-2180-6-23.
doi: 10.1186/1471-2180-6-23 URL |
[1] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
[2] | 石红雨, 张国良, 肖国辉. 单细胞转录组测序技术在结核病研究中的应用[J]. 中国防痨杂志, 2025, 47(3): 362-368. |
[3] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[4] | 李雪莲, 张红燕, 王隽, 王庆枫, 马丽萍, 初乃惠, 聂文娟. 耐药肺结核患者超疗程使用德拉马尼的安全性分析[J]. 中国防痨杂志, 2025, 47(2): 164-168. |
[5] | 倪健健. 耐多药肺结核治疗效果评价[J]. 中国防痨杂志, 2024, 46(S2): 13-15. |
[6] | 耿子妹, 王潮虹, 龙嗣博, 郑迈克, 施亦衡, 孙勇, 赵艳, 王桂荣. 重症肺结核患者病原学阳性率及利福平耐药结果分析[J]. 中国防痨杂志, 2024, 46(9): 1050-1055. |
[7] | 王飞, 华朵, 郭建建, 刘畅, 韩璐, 任易. 2021—2023年武汉地区非结核分枝杆菌肺病患者特征分析[J]. 中国防痨杂志, 2024, 46(9): 1069-1076. |
[8] | 杨梁梓, 张培泽, 卢水华. 世界卫生组织《耐药结核病和丙型病毒性肝炎治疗的联合管理(2024快讯版)》解读[J]. 中国防痨杂志, 2024, 46(8): 874-876. |
[9] | 薛毅, 梁倩, 齐浩然, 梁瑞霞, 黄海荣. 不同技术检测利福平耐药预测耐多药结核病的可靠性分析[J]. 中国防痨杂志, 2024, 46(8): 892-896. |
[10] | 于兰, 陈双双, 王嫩寒, 田丽丽, 赵琰枫, 樊瑞芳, 刘海灿, 李传友, 代小伟. 利福平耐药结核分枝杆菌对氟喹诺酮类药物表型耐药与其基因突变的一致性研究[J]. 中国防痨杂志, 2024, 46(8): 942-950. |
[11] | 高磊, 梁雅雪, 刘盛盛, 王华. 144例老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2024, 46(7): 799-807. |
[12] | 张泓泰, 任怡宣, 胡培磊, 王嫩寒, 李洁, 田丽丽, 赵琰枫, 陈双双, 李传友. 利福平耐药与敏感肺结核患者痰液样本微生物菌群多样性对比分析[J]. 中国防痨杂志, 2024, 46(6): 625-633. |
[13] | 杜雨华, 冯亚娟, 雷宇, 赖铿, 何蔚云. 广州市“十二五”与“十三五”期间利福平耐药肺结核患者发现与治疗情况分析[J]. 中国防痨杂志, 2024, 46(6): 678-686. |
[14] | 叶新春, 刘赛朵, 程芳, 蒋贤高, 宁洪叶, 吴正兴, 周月影, 邱超超, 潘宁, 施伎蝉. 耐药肺结核患者密切接触者结核分枝杆菌潜伏感染危险因素分析[J]. 中国防痨杂志, 2024, 46(5): 525-530. |
[15] | 包训迪, 梁锁, 李军, 叶倩, 吴丹丹, 王舒, 李跃, 丁运生, 刘洁. 2016—2022年安徽省结核病耐药监测结果分析[J]. 中国防痨杂志, 2024, 46(5): 531-537. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||