Email Alert | RSS    帮助

中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (10): 1289-1299.doi: 10.19982/j.issn.1000-6621.20250123

• 论著 • 上一篇    下一篇

基于Joinpoint回归模型的2009—2023年上海市肺结核报告发病趋势分析

丁远路1, 肖文静2, 陶芳芳1, 冯玮1, 王晔1, 饶立歆2, 沈鑫2, 陈健1(), 陈静2()   

  1. 1上海市疾病预防控制中心(上海市预防医学科学院)传染病防治所,上海 201107
    2上海市疾病预防控制中心(上海市预防医学科学院)结核病与艾滋病防治所,上海 201107
  • 收稿日期:2025-03-26 出版日期:2025-10-10 发布日期:2025-09-29
  • 通信作者: 陈健,Email:chenjian@scdc.sh.cn;陈静,Email:chenjing@scdc.sh.cn
  • 作者简介:注:肖文静与丁远路对本研究具有同等贡献,为并列第一作者
  • 基金资助:
    上海市加强公共卫生体系建设三年行动计划(2023—2025)(GWVI-11.1-01);上海市加强公共卫生体系建设三年行动计划(2023—2025)(GWVI-11.1-05);上海市加强公共卫生体系建设三年行动计划(2023—2025)(GWVI-11.2-XD04);2024年度上海市公共卫生研究专项(2024GKQ02);新一代人工智能国家科技重大专项(2021ZD0114005)

Analysis of reported incidence trends of pulmonary tuberculosis in Shanghai, China, 2009—2023, using a Joinpoint regression model

Ding Yuanlu1, Xiao Wenjing2, Tao Fangfang1, Feng Wei1, Wang Ye1, Rao Lixin2, Shen Xin2, Chen Jian1(), Chen Jing2()   

  1. 1Institute of Infectious Disease Prevention and Control, Shanghai Municipal Center for Disease Control and Prevention (Shanghai Institute of Preventive Medicine), Shanghai 201107, China
    2Institute of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention (Shanghai Institute of Preventive Medicine), Shanghai 201107, China
  • Received:2025-03-26 Online:2025-10-10 Published:2025-09-29
  • Contact: Chen Jian, Email: chenjian@scdc.sh.cn;Chen Jing, Email: chenjing@scdc.sh.cn
  • Supported by:
    Shanghai Three-year (2023—2025) Action Plan to Strengthen the Public Health System(GWVI-11.1-01);Shanghai Three-year (2023—2025) Action Plan to Strengthen the Public Health System(GWVI-11.1-05);Shanghai Three-year (2023—2025) Action Plan to Strengthen the Public Health System(GWVI-11.2-XD04);Shanghai Public Health Research Project in 2024(2024GKQ02);National Science and Technology Major Project for New Generation Artificial Intelligence(2021ZD0114005)

摘要:

目的: 基于Joinpoint回归模型分析2009—2023年上海市肺结核报告发病趋势,为评估本市防控措施效果及优化结核病防控策略提供科学依据。方法: 通过“中国疾病预防控制信息系统”子系统“传染病报告信息管理系统”收集2009—2023年上海市肺结核患者报告信息(包括报告发病数、人群分类、户籍分类、病原学分类、职业分类等),采用描述性研究方法分析肺结核报告发病率特征,采用Joinpoint回归模型、年度变化百分比(APC)和平均年度变化百分比(AAPC)评价肺结核发病特征的时间变化趋势。结果: 2009—2023年,上海市肺结核年均报告发病率为26.49/10万(93342/352363000),自2009年的35.72/10万(6745/18885000)下降至2023年的18.35/10万(4541/24746000),年均递降率为4.65%,整体呈下降趋势(AAPC=-5.429%,t=-2.790,P=0.005);病原学年均报告阳性率为48.56%(43242/89050),从2009年的45.30%(3007/6638)下将至2016年的37.07%(2360/6367),再上升至2023年的71.46%(3024/6232),整体呈上升趋势(AAPC=3.033%,t=2.941,P=0.003)。非户籍人口发病率降幅(AAPC=-10.503%)快于本地户籍人口(AAPC=-3.350%),且于2022年起持续低于户籍人口;男性发病率[34.91/10万(63283/181288000)]明显高于女性[17.57/10万(30059/171075000)],但下降速度(AAPC=-6.041%)快于女性(AAPC=-4.312%);老年人群(≥60岁)发病率虽整体呈下降趋势(60~74岁:AAPC=-3.198%;≥75岁:AAPC=-7.996%),但发病率水平仍高于其他年龄组;离退休人员和待业群体患者的构成比分别从2009年的14.89%(1004/6745)和13.49%(910/6745)上升至2023年的39.40%(1789/4541)和29.29%(1330/4541),且均呈明显上升趋势( χ 2值分别为3064.851、4504.868,P值均<0.001)。结论: 上海市肺结核报告发病率逐年下降,病原学阳性检出率逐年上升。非户籍人口、男性、老年和无工作人员总体发病率虽均呈下降趋势,但发病率仍较高,未来应继续强化传染源管控和重点人群主动筛查,并结合信息化技术和精准干预策略,以推动实现“终结结核病流行”目标。

关键词: 结核,肺, 发病率, 模型,统计学, 回归分析, 流行病学研究

Abstract:

Objective: To analyze the epidemiological characteristics and reported incidence trends of pulmonary tuberculosis (PTB) in Shanghai from 2009 to 2023 using a Joinpoint regression model, and to provide a scientific basis for evaluating the effectiveness of TB control measures and optimizing strategies. Methods: Data on PTB cases in Shanghai from 2009 to 2023—including reported incidence counts, population classification, household registration status, etiological classification, and occupational classification—were obtained from the “Communicable Disease Reporting Information Management System”, a subsystem of the “China Information System for Disease Control and Prevention”. Descriptive epidemiological methods were used to analyze characteristics of reported PTB incidence, and the Joinpoint regression model, annual percent change (APC), and average annual percent change (AAPC) were applied to evaluate temporal changes in PTB incidence. Results: From 2009 to 2023, the average annual reported PTB incidence rate in Shanghai was 26.49 per 100000 (93342/352.363 million), decreasing from 35.72 per 100000 (6745/18.885 million) in 2009 to 18.35 per 100000 (4541/24.746 million) in 2023, with an average annual percentage decline of 4.65% and an overall downward trend (AAPC=-5.429%, t=-2.790, P=0.005). The average annual etiological positivity rate was 48.56% (43242/89050), declining from 45.30% (3007/6638) in 2009 to 37.07% (2360/6367) in 2016, then increasing to 71.46% (3024/6232) in 2023, showing an overall upward trend (AAPC=3.033%, t=2.941, P=0.003). The decline in incidence among the non-registered resident population (AAPC=-10.503%) was faster than that among registered residents (AAPC=-3.350%), and since 2022, the incidence rate among non-registered residents had been lower than that of registered residents. The incidence rate in males (34.91 per 100000 (63283/181288000)) was significantly higher than in females (17.57 per 100000 (30059/171075000)), but the rate of decline (AAPC=-6.041%) was faster than that in females (AAPC=-4.312%). Among the elderly population (≥60 years), the incidence rate showed an overall declining trend, with AAPCs of -3.198% in the 60-74 year group and -7.996% in the ≥75-year group, but remained higher than that of other age groups. The proportions of retirees and unemployed individuals increased from 14.89% (1004/6745) and 13.49% (910/6745) in 2009 to 39.40% (1789/4541) and 29.29% (1330/4541) in 2023, respectively, both showing significant upward trends ( χ t r e n d 2=3064.851 and 4504.868, both P<0.001). Conclusion: Significant progress has been achieved in TB prevention and control in Shanghai, as evidenced by a sustained decline in the reported incidence rate and a gradual improvement in the bacteriological positivity rate. Although the overall incidence among non-registered residents, males, the elderly, and individuals without employment has shown a downward trend, the incidence in these groups remains relatively high. It is recommended to continue strengthening the management of infectious sources and proactive screening of high-risk populations, and to integrate information technologies with precise intervention strategies to advance progress toward the goal of “End-TB”.

Key words: Tuberculosis, pulmonary, Incidence, Models, statistical, Regression analysis, Epidemiologic studies

中图分类号: