[1] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6):500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[2] |
Nguyen L. Antibiotic resistance mechanisms in M.tuberculosis: an update. Arch Toxicol, 2016, 90(7): 1585-604. doi:10.1007/s00204-016-1727-6.
pmid: 27161440
|
[3] |
Singh R, Dwivedi SP, Gaharwar US, et al. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol, 2020, 128(6): 1547-1567. doi:10.1111/jam.14478.
pmid: 31595643
|
[4] |
Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem, 2014, 289(23): 16526-16540. doi:10.1074/jbc.M113.538959.
pmid: 24737322
|
[5] |
Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem, 2017, 170: 75-84. doi:10.1016/j.jinorgbio.2017.02.013.
|
[6] |
Poulton NC, Azadian ZA, DeJesus MA, et al. Mutations in rv0678 Confer Low-Level Resistance to Benzothiazinone DprE 1 Inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2022, 66(9): e0090422. doi:10.1128/aac.00904-22.
|
[7] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9): 2507-2510. doi:10.1093/jac/dkv150.
pmid: 26045528
|
[8] |
Snobre J, Villellas MC, Coeck N, et al. Bedaquiline- and clofazimine-selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Sci Rep, 2023, 13(1): 10444. doi:10.1038/s41598-023-36955-y.
|
[9] |
Xu J, Wang B, Hu M, et al. Primary Clofazimine and Beda-quiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother, 2017, 61(6): e00239-17. doi:10.1128/AAC.00239-17.
|
[10] |
Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother, 2017, 72(3): 684-690. doi:10.1093/jac/dkw502.
pmid: 28031270
|
[11] |
Xu J, Li D, Shi J, et al. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M.tuberculosis. Antimicrob Agents Chemother, 2023, 67(7): e0153222. doi:10.1128/aac.01532-22.
|
[12] |
李东硕, 王彬, 陆宇, 等. 结核分枝杆菌膜蛋白MmpS5-MmpL5的表达及功能研究. 中国防痨杂志, 2022, 44(3): 227-233. doi:10.19982/j.issn.1000-6621.20210587.
|
[13] |
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev, 2019, 43(5): 490-516. doi:10.1093/femsre/fuz014.
pmid: 31150547
|
[14] |
Wang H, Yang Y, Wang S, et al. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release, 2024, 369: 25-38. doi:10.1016/j.jconrel.2024.03.031.
|
[15] |
Bryan EJ, Purcell MA, Kumar A. Zuclopenthixol dihydrochloride for schizophrenia. Cochrane Database Syst Rev, 2017, 11(11): CD005474. doi:10.1002/14651858.CD005474.pub2.
|
[16] |
史静华, 李东硕, 岑山, 等. 结核分枝杆菌MmpL5蛋白与贝达喹啉及氯法齐明相互作用的关键结合区域研究. 中国抗生素杂志, 2024, 49(8): 890-897. doi:10.3969/j.issn.1001-8689.2024.08.008.
|
[17] |
Burg RW, Miller BM, Baker EE, et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother, 1979, 15(3): 361-367. doi:10.1128/AAC.15.3.361.
pmid: 464561
|
[18] |
Martins M, Viveiros M, Couto I, et al. Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo, 2011, 25(2):171-178.
pmid: 21471531
|
[19] |
翟若南, 吴安华. 世界卫生组织《2024年细菌类重点病原体目录》. 中国感染控制杂志, 2024, 23(6): 782-783. doi:10.12138/j.issn.1671-9638.20245435.
|