[1] |
World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021.
|
[2] |
陈松华, 吴蓓蓓, 柳正卫, 等. 浙江省结核病耐药状况分析. 预防医学, 2016, 28(8): 757-761,765. doi: 10.19485/j.cnki.issn1007-0931.2016.08.001.
doi: 10.19485/j.cnki.issn1007-0931.2016.08.001
|
[3] |
Kizny Gordon A, Marais B, Walker TM, et al. Clinical and public health utility of Mycobacterium tuberculosis whole genome sequencing. Int J Infect Dis, 2021, 113 Suppl 1: S40-S42. doi: 10.1016/j.ijid.2021.02.114.
doi: 10.1016/j.ijid.2021.02.114
pmid: 33716192
|
[4] |
张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用. 中国防痨杂志, 2020, 42(7): 737-740. doi: 10.3969/j.issn.1000-6621.2020.07.017.
doi: 10.3969/j.issn.1000-6621.2020.07.017
|
[5] |
Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019, 17(9): 533-545. doi: 10.1038/s41579-019-0214-5.
doi: 10.1038/s41579-019-0214-5
pmid: 31209399
|
[6] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019, 11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8
URL
|
[7] |
中国防痨协会. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015:59-65.
|
[8] |
Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17):i884-i890. doi: 10.1093/bioinformatics/bty560.
doi: 10.1093/bioinformatics/bty560
URL
|
[9] |
Phelan JE, O’Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med, 2019, 11(1):41. doi: 10.1186/s13073-019-0650-x.
doi: 10.1186/s13073-019-0650-x
pmid: 31234910
|
[10] |
World Health Organization. GLASS whole-genome sequencing for surveillance of antimicrobial resistance. Geneva: World Health Organization, 2020.
|
[11] |
Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015, 15(10):1193-1202. doi: 10.1016/S1473-3099(15)00062-6.
doi: 10.1016/S1473-3099(15)00062-6
URL
|
[12] |
Chen X, He G, Wang S, et al. Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China. Front Microbiol, 2019, 10:1741. doi: 10.3389/fmicb.2019.01741.
doi: 10.3389/fmicb.2019.01741
URL
|
[13] |
World Health Organization. Target product profile for next-generation drug-susceptibility testing at peripheral centres. Geneva: World Health Organization, 2021.
|
[14] |
Hillemann D, Rüsch-Gerdes S, Boehme C, et al. Rapid molecular detection of extrapulmonary tuberculosis by the automated GeneXpert MTB/RIF system. J Clin Microbiol, 2011, 49(4):1202-1205. doi: 10.1128/JCM.02268-10.
doi: 10.1128/JCM.02268-10
pmid: 21270230
|
[15] |
Meaza A, Kebede A, Yaregal Z, et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis, 2017, 17(1):280. doi: 10.1186/s12879-017-2389-6.
doi: 10.1186/s12879-017-2389-6
pmid: 28415989
|
[16] |
Jian J, Yang X, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist, 2018, 11:1627-1634. doi: 10.2147/IDR.S176609.
doi: 10.2147/IDR.S176609
URL
|
[17] |
罗丹, 覃慧芳, 叶婧, 等. 广西壮族自治区结核分枝杆菌耐药基因突变特征及其与基因型的相关性分析. 中国防痨杂志, 2021, 43(6): 596-601. doi: 10.3969/j.issn.1000-6621.2021.06.013.
doi: 10.3969/j.issn.1000-6621.2021.06.013
|
[18] |
洪创跃, 杨婷婷, 李金莉, 等. 深圳市耐多药结核分枝杆菌耐药基因突变特征分析. 中国防痨杂志, 2020, 42(6): 583-589. doi: 10.3969/j.issn.1000-6621.2020.06.009.
doi: 10.3969/j.issn.1000-6621.2020.06.009
|
[19] |
高敏, 杨婷婷, 李桂莲, 等. 基于全基因组测序的我国耐多药结核分枝杆菌耐药突变特征分析. 中华流行病学杂志, 2020, 41(5): 770-775. doi: 10.3760/cma.j.cn112338-20191111-00800.
doi: 10.3760/cma.j.cn112338-20191111-00800
|
[20] |
田丽, 周伟, 黄星, 等. 中国异烟肼耐药结核分枝杆菌基因突变特征分析. 中国防痨杂志, 2022, 44(4): 354-361. doi: 10.19982/j.issn.1000-6621.20210573.
doi: 10.19982/j.issn.1000-6621.20210573
|
[21] |
Lempens P, Meehan CJ, Vandelannoote K, et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep, 2018, 8(1):3246. doi: 10.1038/s41598-018-21378-x.
doi: 10.1038/s41598-018-21378-x
URL
|
[22] |
Zhang D, Liu B, Wang Y, et al. Rapid molecular screening for multidrug-resistant tuberculosis in a resource-limited region of China. Trop Med Int Health, 2014, 19(10):1259-1266. doi: 10.1111/tmi.12359.
doi: 10.1111/tmi.12359
pmid: 25040060
|
[23] |
Ye M, Yuan W, Molaeipour L, et al. Antibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob, 2021, 20(1):73. doi: 10.1186/s12941-021-00478-z.
doi: 10.1186/s12941-021-00478-z
URL
|
[24] |
Javed H, Bakuła Z, Pleń M, et al. Evaluation of Genotype MTBDRplus and MTBDRsl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol, 2018, 9:2265. doi: 10.3389/fmicb.2018.02265.
doi: 10.3389/fmicb.2018.02265
URL
|
[25] |
Dantas NGT, Suffys PN, Carvalho WDS, et al. Correlation between the BACTEC MGIT 960 culture system with Genotype MTBDRplus and TB-SPRINT in multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Mem Inst Oswaldo Cruz, 2017, 112(11):769-774. doi: 10.1590/0074-02760170062.
doi: 10.1590/0074-02760170062
URL
|
[26] |
Li D, Hu Y, Werngren J, et al. Multicenter Study of the Emergence and Genetic Characteristics of Pyrazinamide-Resis-tant Tuberculosis in China. Antimicrob Agents Chemother, 2016, 60(9):5159-5166. doi: 10.1128/AAC.02687-15.
doi: 10.1128/AAC.02687-15
URL
|
[27] |
Huang H, Ding N, Yang T, et al. Cross-sectional Whole-genome Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis, 2019, 69(3):405-413. doi: 10.1093/cid/ciy883.
doi: 10.1093/cid/ciy883
URL
|