[1] |
Stott KE, Pertinez H, Sturkenboom MGG , et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother, 2018,73(9):2305-2313.
doi: 10.1093/jac/dky152
URL
pmid: 29701775
|
[2] |
Abulfathi AA, Decloedt EH, Svensson EM , et al. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clin Pharmacokinet, 2019,58(9):1103-1129.
doi: 10.1007/s40262-019-00764-2
URL
pmid: 31049868
|
[3] |
Aarnoutse RE, Kibiki GS, Reither K , et al. Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Admi-nistered at 600, 900, and 1200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother, 2017,61(11):e01054-17.
doi: 10.1128/AAC.01054-17
URL
pmid: 28827417
|
[4] |
赵螈, 雷倩, 党丽云 , 等. 抗结核药物血药浓度监测工作的思考和展望. 中国防痨杂志, 2017,39(11):1228-1232.
|
[5] |
Mota L, Al-Efraij K, Campbell JR , et al. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberc Lung Dis, 2016,20(6):819-826.
doi: 10.5588/ijtld.15.0803
URL
pmid: 27155187
|
[6] |
Verbeeck RK, Günther G, Kibuule D , et al. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol, 2016,72(8):905-916.
doi: 10.1007/s00228-016-2083-4
URL
pmid: 27305904
|
[7] |
Chawla PK, Udwadia ZF, Soman R , et al. Importance of Therapeutic Drug Monitoring of Rifampicin. J Assoc Physicians India, 2016,64(8):68-72.
URL
pmid: 27762112
|
[8] |
World Health Organization . Guideline for treatment of tuberculosis, fourth edition. Geneva:World Health Organization, 2009.
|
[9] |
Alsultan A, Peloquin CA . Therapeutic drug monitoring in the treatmentof tuberculosis: an update. Drugs, 2014,74(8):839-854.
doi: 10.1007/s40265-014-0222-8
URL
pmid: 24846578
|
[10] |
Vu DH, Alffenaar JW, Edelbroek PM , et al. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des, 2011,17(27):2931-2939.
doi: 10.2174/138161211797470174
URL
pmid: 21834763
|
[11] |
Pasipanodya JG, Mcilleron H, Burger A , et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013,208(9):1464-1473.
doi: 10.1093/infdis/jit352
URL
|
[12] |
Wilkins JJ, Savic RM, Karlsson MO , et al. Population pharmacokinetics of rifampin in pulmonary tuberculosis patients, including a semimechanistic model to describe variable absorption. Antimicrob Agents Chemother, 2008,52(6):2138-2148.
doi: 10.1128/AAC.00461-07
URL
pmid: 18391026
|
[13] |
Nahid P, Dorman SE, Alipanah N , et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis, 2016,63(7):e147-195.
doi: 10.1093/cid/ciw376
URL
pmid: 27516382
|
[14] |
Kumar AKH, Chandrasekaran V, Kumar AK , et al. Food significantly reduces plasma concentrations of first-line anti-tuberculosis drugs. Indian J Med Res, 2017,145(4):530-535.
doi: 10.4103/ijmr.IJMR_552_15
URL
pmid: 28862186
|
[15] |
Fahimi F, Tabarsi P, Kobarfard F , et al. Isoniazid, rifampicin and pyrazinamide plasma concentrations 2 and 6 h post dose in patients with pulmonary tuberculosis. Int J Tuberc Lung Dis, 2013,17(12):1602-1606.
doi: 10.5588/ijtld.13.0019
URL
pmid: 24200276
|
[16] |
Yang S, Hwang SJ, Park JY , et al. Association of genetic polymorphisms of CYP2E1, NAT2, GST and SLCO1B1 with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. BMJ Open, 2019,9(8):e027940.
doi: 10.1136/bmjopen-2018-027940
URL
pmid: 31375612
|
[17] |
邓国防, 孙丽珍, 詹森林 , 等. 有机阴离子转运多肽1B1基因多态性和利福平血药浓度对肝毒性的影响. 中国防痨杂志, 2015,37(9):933-937.
doi: doi:10.3969/j.issn.1000-6621.2015.05.004
URL
|
[18] |
Requena-Méndez A, Davies G, Ardrey A , et al. Pharmacokinetics of rifampin in Peruvian tuberculosis patients with and without comorbid diabetes or HIV. Antimicrob Agents Chemother, 2012,56(5):2357-2363.
doi: 10.1128/AAC.06059-11
URL
pmid: 22330931
|
[19] |
陈明, 吴首蓉, 赵冠人 , 等. 抗结核药物利福平不同时间点血药浓度对比分析. 临床药物治疗杂志, 2018,16(5):47-49.
|
[20] |
魏香兰, 方如塘, 师延峰 , 等. 抗结核药物的血药浓度监测结果分析. 中国医院药学杂志, 2015,35(11):1918-1921.
|
[21] |
Dooley KE, Chaisson RE . Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis, 2009,9(12):737-746.
doi: 10.1016/S1473-3099(09)70282-8
URL
|
[22] |
Kumar AK, Chandrasekaran V, Kannan T , et al. Anti-tuberculosis drug concentrations in tuberculosis patients with and without diabetes mellitus. Eur J Clin Pharmacol, 2017,73(1):65-70.
doi: 10.1007/s00228-016-2132-z
URL
pmid: 27651240
|
[23] |
Heysell SK, Moore JL, Keller SJ , et al. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program,Virginia,USA. Emerg Infect Dis, 2010,16(10):1546-1553.
doi: 10.3201/eid1610.100374
URL
pmid: 20875279
|
[24] |
Litjens CHC, Aarnoutse RE, van Ewijk-Beneken Kolmer EWJ , et al. Protein binding of rifampicin is not saturated when using high-dose rifampicin. J Antimicrob Chemother, 2019,74(4):986-990.
doi: 10.1093/jac/dky527
URL
pmid: 30597025
|
[25] |
郭少晨, 朱慧, 郭超 , 等. 909例结核病患者一线抗结核药物血药浓度监测结果分析. 中国防痨杂志, 2018,40(7):744-749.
|