| [1] |
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023.
|
| [2] |
Vorster MJ, Allwood BW, Diacon AH, et al. Tuberculous pleural effusions: advances and controversies. J Thorac Dis, 2015, 7(6):981-991. doi:10.3978/j.issn.2072-1439.2015.02.18.
pmid: 26150911
|
| [3] |
Mitroi DM, Balteanu MA, Cioboata R, et al. Hypercoagulability in Tuberculosis: Pathophysiological Mechanisms, Associated Risks, and Advances in Management-A Narrative Review. J Clin Med, 2025, 14(3):762. doi:10.3390/jcm14030762.
|
| [4] |
Zhai K, Lu Y, Shi HZ. Tuberculous pleural effusion. J Thorac Dis, 2016, 8(7):E486-E494. doi:10.21037/jtd.2016.05.87.
|
| [5] |
Kim HW, Kim KH, Shin AY, et al. Investigating the appropriate adenosine deaminase cutoff value for the diagnosis of tuberculous pleural effusion in a country with decreasing TB burden. Sci Rep, 2022, 12(1):7586. doi:10.1038/s41598-022-11460-w.
pmid: 35534515
|
| [6] |
Yang X, Zhang J, Liang Q, et al. Use of T-SPOT.TB for the diagnosis of unconventional pleural tuberculosis is superior to ADA in high prevalence areas: a prospective analysis of 601 cases. BMC Infect Dis, 2021, 21(1):4. doi:10.1186/s12879-020-05676-2.
|
| [7] |
Song J, Hwang EJ, Yoon SH, et al. Emerging Trends and Innovations in Radiologic Diagnosis of Thoracic Diseases. Invest Radiol, 2025. doi:10.1097/RLI.0000000000001179.
|
| [8] |
Denkinger CM, Kik SV, Cirillo DM, et al. Defining the needs for next generation assays for tuberculosis. J Infect Dis, 2015, 211 Suppl 2(Suppl 2):S29-S38. doi:10.1093/infdis/jiu821.
|
| [9] |
Huang F, Wang H, Qiao R, et al. Diagnostic accuracy and microbial profiles of tuberculous pleurisy: a comparative study of metagenomic next generation sequencing and GeneXpert Mycobacterium tuberculosis. Front Cell Infect Microbiol, 2023, 13:1243441. doi:10.3389/fcimb.2023.1243441.
|
| [10] |
Changchien CY, Chen Y, Chang HH, et al. Effect of malignant-associated pleural effusion on endothelial viability, motility and angiogenesis in lung cancer. Cancer Sci, 2020, 111(10):3747-3758. doi:10.1111/cas.14584.
|
| [11] |
Liu Y, He C, Zhao H, et al. Association between hematological inflammatory markers and latent TB infection: insights from NHANES 2011-2012 and transcriptomic data. Front Cell Infect Microbiol, 2025, 15:1556048. doi:10.3389/fcimb.2025.1556048.
|
| [12] |
Gao L, Wang W, Zhang Y, et al. Adenosine deaminase-based measurement in the differential diagnosis of pleural effusion: a multicenter retrospective study. Ther Adv Respir Dis, 2023, 17:17534666231155747. doi:10.1177/17534666231155747.
|
| [13] |
Wang S, Tian S, Li Y, et al. Development and validation of a novel scoring system developed from a nomogram to identify malignant pleural effusion. EBioMedicine, 2020, 58:102924. doi:10.1016/j.ebiom.2020.102924.
|
| [14] |
Laçi H, Sevrani K, Iqbal S. Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review. BMC Med Imaging, 2025, 25(1):156. doi:10.1186/s12880-025-01701-5.
|
| [15] |
Rauschert S, Raubenheimer K, Melton PE, et al. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenetics, 2020, 12(1):51. doi:10.1186/s13148-020-00842-4.
pmid: 32245523
|
| [16] |
Yang X, Che N, Duan H, et al. Cell-free Mycobacterium tuberculosis DNA test in pleural effusion for tuberculous pleurisy: a diagnostic accuracy study. Clin Microbiol Infect, 2020, 26(8):1089.e1-1089.e6. doi:10.1016/j.cmi.2019.11.026.
|
| [17] |
Isabona J, Imoize AL, Kim Y. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Sensors (Basel), 2022, 22(10):3776. doi:10.3390/s22103776.
|
| [18] |
Luo Y, Xue Y, Song H, et al. Machine learning based on routine laboratory indicators promoting the discrimination between active tuberculosis and latent tuberculosis infection. J Infect, 2022, 84(5):648-657. doi:10.1016/j.jinf.2021.12.046.
pmid: 34995637
|
| [19] |
Yao F, Zhang R, Lin Q, et al. Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis. Emerg Microbes Infect, 2024, 13(1):2370399. doi:10.1080/22221751.2024.2370399.
|
| [20] |
Lundberg SM, Erion G, Chen H, et al. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat Mach Intell, 2020, 2(1):56-67. doi:10.1038/s42256-019-0138-9.
pmid: 32607472
|
| [21] |
Zhang X, Meng Q, Miao R, et al. The diagnostic value of T cell spot test and adenosine deaminase in pleural effusion for tuberculous pleurisy: A systematic review and meta-analysis. Tuberculosis (Edinb), 2022, 135:102223. doi:10.1016/j.tube.2022.102223.
|
| [22] |
Zhou J, Yang Y, Zhang Y, et al. Age: pleural fluid ADA ratio and other indicators for differentiating between tubercular and malignant pleural effusions. Medicine (Baltimore), 2022, 101(26):e29788. doi:10.1097/MD.0000000000029788.
|