Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (9): 1227-1232.doi: 10.19982/j.issn.1000-6621.20250143
• Review Articles • Previous Articles Next Articles
Chen Liyao1, Peng Xiao1, Liu Yuanyuan1, Shi Jin2, Guo Yongli1, Lu Jie1()
Received:
2025-04-09
Online:
2025-09-10
Published:
2025-08-27
Contact:
Lu Jie
E-mail:lujiebch@163.com
Supported by:
CLC Number:
Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. doi: 10.19982/j.issn.1000-6621.20250143
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250143
[1] | Jumabayi W, Reyimu A, Zheng R, et al. Ferroptosis: A new way to intervene in the game between Mycobacterium tuberculosis and macrophages. Microb Pathog, 2024, 197:107014. doi:10.1016/j.micpath.2024.107014. |
[2] | Huang L, Nazarova EV, Tan S, et al. Growth of Mycobacte-rium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med, 2018, 215(4):1135-1152. doi:10.1084/jem.20172020. |
[3] |
Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 2009, 136(1):37-49. doi:10.1016/j.cell.2008.11.014.
pmid: 19135887 |
[4] | Tsai ML, Tsai YG, Lin YC, et al. IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy. Int J Mol Sci, 2021, 23(1):3. doi:10.3390/ijms23010003. |
[5] | Chai J, Luo L, Hou F, et al. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One, 2016, 11(9):e163634. doi:10.1371/journal.pone.0163634. |
[6] |
Le Belle JE, Orozco NM, Paucar AA, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell, 2011, 8(1):59-71. doi:10.1016/j.stem.2010.11.028.
pmid: 21211782 |
[7] |
Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol, 2023, 33(12):1077-1087. doi:10.1016/j.tcb.2023.05.003.
pmid: 37407304 |
[8] |
Qiang L, Zhang Y, Lei Z, et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat Commun, 2023, 14(1):1430. doi:10.1038/s41467-023-37148-x.
pmid: 36932056 |
[9] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5):1060-1072. doi:10.1016/j.cell.2012.03.042.
pmid: 22632970 |
[10] | Fu B, Lou Y, Wu P, et al. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia, 2024, 55:101017. doi:10.1016/j.neo.2024.101017. |
[11] | Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res, 2011, 44(6):458-467. doi:10.1021/ar200024c. |
[12] |
Henning Y, Blind US, Larafa S, et al. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis, 2022, 13(7):662. doi:10.1038/s41419-022-05121-z.
pmid: 35906211 |
[13] | Dingjan T, Futerman AH. The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. Bioessays, 2021, 43(5):e2100021. doi:10.1002/bies.202100021. |
[14] | Li Y, Zhao T, Li J, et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res, 2022, 2022:2233906. doi:10.1155/2022/2233906. |
[15] |
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res, 2021, 31(2):107-125. doi:10.1038/s41422-020-00441-1.
pmid: 33268902 |
[16] | Kisova-Vargova L, Cernanska D, Bhide M. Comparative study of binding of ovine complement factor H with different Borrelia genospecies. Folia Microbiol (Praha), 2012, 57(2):123-128. doi:10.1007/s12223-012-0104-y. |
[17] | Kwon M, Park E, Lee S, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 2015, 6(27):24393-24403. doi:10.18632/oncotarget.5162. |
[18] |
Mesquita G, Silva T, Gomes AC, et al. H-Ferritin is essential for macrophages’ capacity to store or detoxify exogenously added iron. Sci Rep, 2020, 10(1):3061. doi:10.1038/s41598-020-59898-0.
pmid: 32080266 |
[19] |
Sanchez M, Sabio L, Galvez N, et al. Iron chemistry at the service of life. IUBMB Life, 2017, 69(6):382-388. doi:10.1002/iub.1602.
pmid: 28150902 |
[20] |
Phelan JJ, Basdeo SA, Tazoll SC, et al. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol, 2018, 9:2296. doi:10.3389/fimmu.2018.02296.
pmid: 30374347 |
[21] | Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4):266-282. doi:10.1038/s41580-020-00324-8. |
[22] |
Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol, 2019, 15(12):1137-1147. doi:10.1038/s41580-020-00324-8.
pmid: 31740834 |
[23] |
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta, 2015, 1851(4):308-330. doi:10.1016/j.bbalip.2014.10.002.
pmid: 25316652 |
[24] | Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Cent Sci, 2018, 4(3):387-396. doi:10.1021/acscentsci.7b00589. |
[25] | Shintoku R, Takigawa Y, Yamada K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci, 2017, 108(11):2187-2194. doi:10.1111/cas.13380. |
[26] | Li F, Long H, Zhou Z, et al. System X(c)(-)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol, 2022, 13:910292. doi:10.3389/fphar.2022.910292. |
[27] | Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med, 2020, 152:175-185. doi:10.1016/j.freeradbiomed.2020.02.027. |
[28] | Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 2019, 133:144-152. doi:10.1016/j.freeradbiomed.2018.09.014. |
[29] |
Gao M, Monian P, Quadri N, et al. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell, 2015, 59(2):298-308. doi:10.1016/j.molcel.2015.06.011.
pmid: 26166707 |
[30] | Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox Signal, 2018, 29(1):61-74. doi:10.1089/ars.2017.7115. |
[31] |
Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab, 2020, 32(6):920-937. doi:10.1016/j.cmet.2020.10.011.
pmid: 33217331 |
[32] | Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP 1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784):688-692. doi:10.1038/s41586-019-1705-2. |
[33] |
Ingold I, Berndt C, Schmitt S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018, 172(3):409-422. doi:10.1016/j.cell.2017.11.048.
pmid: 29290465 |
[34] | Friedmann Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis. Free Radic Biol Med, 2018, 127:153-159. doi:10.1016/j.freeradbiomed.2018.03.001. |
[35] |
Elguindy MM, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J Biol Chem, 2015, 290(34):20815-20826. doi:10.1074/jbc.M115.641498.
pmid: 26063804 |
[36] |
Yang D, Yaguchi T, Nagata T, et al. AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol Biochem, 2011, 27(1):37-44. doi:10.1159/000325203.
pmid: 21325820 |
[37] | Kaku Y, Tsuchiya A, Kanno T, et al. HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28 human gastric cancer cells in association with AMID accumulation in the nucleus. Anticancer Agents Med Chem, 2015, 15(2):242-247. doi:10.2174/1871520614666140922122700. |
[38] | Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci, 2020, 6(1):41-53. doi:10.1021/acscentsci.9b01063. |
[39] | Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol, 2020, 16(12):1351-1360. doi:10.1038/s41589-020-0613-y. |
[40] | Yuan H, Li X, Zhang X, et al. Identification of ACSL 4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun, 2016, 478(3):1338-1343. doi:10.1016/j.bbrc.2016.08.124. |
[41] |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017, 13(1):91-98. doi:10.1038/nchembio.2239.
pmid: 27842070 |
[42] |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 2017, 13(1):81-90. doi:10.1038/nchembio.2238.
pmid: 27842066 |
[43] |
Dixon SJ, Winter GE, Musavi LS, et al. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol, 2015, 10(7):1604-1609. doi:10.1021/acschembio.5b00245.
pmid: 25965523 |
[44] | Dawi J, Affa S, Kafaja K, et al. The Role of Ferroptosis and Cuproptosis in Tuberculosis Pathogenesis: Implications for Therapeutic Strategies. Curr Issues Mol Biol, 2025, 47(2):99. doi:10.3390/cimb47020099. |
[45] | Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med, 2019, 216(3):556-570. doi:10.1084/jem.20181776. |
[46] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171(2):273-285. doi:10.1016/j.cell.2017.09.021.
pmid: 28985560 |
[47] | Li Y, Ma J, Wang C, et al. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci, 2023, 18(1):20220722. doi:10.1515/biol-2022-0722. |
[48] | Li J, Li L, Zhang Z, et al. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol, 2023, 14:1294317. doi:10.3389/fimmu.2023.1294317. |
[49] |
Marinho FV, Benmerzoug S, Rose S, et al. The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against Mycobacterium tuberculosis Infection. J Innate Immun, 2018, 10(3):239-252. doi:10.1159/000488952.
pmid: 29791904 |
[50] |
Wufuer D, Li Y, Aierken H, et al. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res, 2023, 28(1):445. doi:10.1186/s40001-023-01371-5.
pmid: 37853432 |
[51] | Wang J, Cao H, Xie Y, et al. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother, 2024, 177:117030. doi:10.1016/j.biopha.2024.117030. |
[52] |
Rockwood N, Costa DL, Amaral EP, et al. Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes. Front Immunol, 2017, 8:542. doi:10.3389/fimmu.2017.00542.
pmid: 28553288 |
[53] | Yang S, Ouyang J, Lu Y, et al. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol, 2022, 13:842858. doi:10.3389/fimmu.2022.842858. |
[54] | Andrade BB, Pavan Kumar N, Mayer-Barber KD, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One, 2013, 8(5):e62618. doi:10.1371/journal.pone.0062618. |
[55] | Liang T, Chen J, Xu G, et al. Ferroptosis-related gene SOCS1, a marker for tuberculosis diagnosis and treatment, involves in macrophage polarization and facilitates bone destruction in tuberculosis. Tuberculosis (Edinb), 2022, 132:102140. doi:10.1016/j.tube.2021.102140. |
[56] | Amaral EP, Namasivayam S, Queiroz ATL, et al. BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility. Nat Microbiol, 2024, 9(1):120-135. doi:10.1038/s41564-023-01523-7. |
[57] |
Moreira-Teixeira L, Tabone O, Graham CM, et al. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat Immunol, 2020, 21(4):464-476. doi:10.1038/s41590-020-0610-z.
pmid: 32205882 |
[58] |
Ma R, Fang L, Chen L, et al. Ferroptotic stress promotes macrophages against intracellular bacteria. Theranostics, 2022, 12(5):2266-2289. doi:10.7150/thno.66663.
pmid: 35265210 |
[59] | Liu M, Kong N, Zhang G, et al. The critical role of ferritinophagy in human disease. Front Pharmacol, 2022, 13:933732. doi:10.3389/fphar.2022.933732. |
[60] |
Bellelli R, Federico G, Matte’ A, et al. NCOA4 Deficiency Impairs Systemic Iron Homeostasis. Cell Rep, 2016, 14(3):411-421. doi:10.3389/fphar.2022.933732.
pmid: 26776506 |
[61] |
Yao X, Zhang Y, Hao J, et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res, 2019, 14(3):532-541. doi:10.4103/1673-5374.245480.
pmid: 30539824 |
[62] | Cronje L, Edmondson N, Eisenach KD, et al. Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. FEMS Immunol Med Microbiol, 2005, 45(2):103-112. doi:10.1016/j.femsim.2005.02.007. |
[63] | Phelan JJ, McQuaid K, Kenny C, et al. Desferrioxamine Supports Metabolic Function in Primary Human Macrophages Infected With Mycobacterium tuberculosis. Front Immunol, 2020, 11:836. doi:10.3389/fimmu.2020.00836. |
[64] | Huang C, Guo Y, Li T, et al. Pharmacological activation of GPX4 ameliorates doxorubicin-induced cardiomyopathy. Redox Biol, 2024, 70:103024. doi:10.1016/j.redox.2023.103024. |
[65] | Horonchik L, Wessling-Resnick M. The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor. Chem Biol, 2008, 15(7):647-653. doi:10.1016/j.chembiol.2008.05.011. |
[66] |
Scarpellini C, Klejborowska G, Lanthier C, et al. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci, 2023, 44(12):902-916. doi:10.1016/j.tips.2023.08.012.
pmid: 37770317 |
[67] | Amaral EP, Foreman TW, Namasivayam S, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med, 2022, 219(11):e20220504. doi:10.1084/jem.20220504. |
[68] | Pedre B, Barayeu U, Ezerina D, et al. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol Ther, 2021, 228:107916. doi:10.1016/j.pharmthera.2021.107916. |
[69] |
Amaral EP, Namasivayam S. Emerging Role for Ferroptosis in Infectious Diseases. Adv Exp Med Biol, 2021, 1301:59-79. doi:10.1007/978-3-030-62026-4_5.
pmid: 34370288 |
[1] | Yan Yueming, Chen Meng, Li Xuekui, Wang Zhongdong, Sun Haiyan, Dai Xiaoqi, Song Song, Xu Honghong, Zhang Menghan, Wang Zhi, Lyu Kunzheng. Prevalence and influencing factors of latent tuberculosis infection among elderly residents in nursing homes in Qingdao [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1148-1153. |
[2] | Zhu Tingting, Wang Mingzhe, Zulikatiayi Abudula, Gulina Badeerhan, Kaideliyan Abuduwaili, Wang Le. Preliminary analysis of the construction of mouse models infected with Xinjiang Uygur Autonomous Region Mycobacterium tuberculosis CAS lineage and H37Rv standard strain [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1187-1195. |
[3] | Wang Lin, Qu Yan. Research progress on hospital infection prevention and control of multidrug-resistant organisms [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1196-1203. |
[4] | Lai Xiaoyu, Duan Hongfei, Chen Xunxun, Guo Huixin, Liao Qinghua, Chen Qian, Liang Dan. Clinical characteristics, diagnostic strategies, and advances in grading criteria for tubercular uveitis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1204-1211. |
[5] | Wang Huijuan, Cheng Ruixia, Xu jia. Research progress on medication adherence in patients with pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1212-1219. |
[6] | Zhang Xiaoke, Chen Ling. Research progress on the anti-tuberculosis effect and mechanism of cinnamaldehyde on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1220-1226. |
[7] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[8] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[9] | Zhu Qingdong, Zhao Chunyan, Xie Zhouhua, Song Shulin, Song Chang. Research progress on the application of artificial intelligence-based CT radiomics in the diagnosis and treatment response monitoring of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1068-1076. |
[10] | Meng Qinglin, Wang Yunxia, Tang Yan, Liu Eryong. Analysis of psychological support of tuberculosis patients at home and abroad [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 981-985. |
[11] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[12] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[13] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[14] | Liu Yiping, Lin Youfei, Chen Xiaohong, Pan Jianguang. A case of pulmonary Castleman disease prone to misdiagnosis: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 921-929. |
[15] | Wang Yutong, Liu Yuhong, Li Liang. Research progress on psychological and psychiatric adverse reactions induced by antituberculosis drugs [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 947-953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||