Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (7): 884-892.doi: 10.19982/j.issn.1000-6621.20240584
• Original Articles • Previous Articles Next Articles
Zheng Zhuangbin1,2, Bi Lijun2(), Zhang Liqun1,2(
)
Received:
2024-12-27
Online:
2025-07-10
Published:
2025-07-03
Contact:
Zhang Liqun, Email: Supported by:
CLC Number:
Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline[J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. doi: 10.19982/j.issn.1000-6621.20240584
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240584
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | Cox E, Laessig K. FDA approval of bedaquiline-the benefit-risk balance for drug-resistant tuberculosis. N Engl J Med, 2014, 371(8):689-691. doi:10.1056/NEJMp1314385. |
[3] | Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J, 2017, 49(5): 1700387. doi:10.1183/13993003.00387-2017. |
[4] |
Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, 2018, 392(10150): 821-834. doi:10.1016/S0140-6736(18)31644-1.
pmid: 30215381 |
[5] | Olayanju O, Limberis J, Esmail A, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J, 2018, 51(5): 1800544. doi:10.1183/13993003.00544-2018. |
[6] | 梁晨, 唐神结, 林明贵. 结核病综合治疗研究进展. 结核与肺部疾病杂志, 2024, 5(1): 70-80. doi:10.19983/j.issn.2096-8493.20230112. |
[7] | Guglielmetti L. Bedaquiline for the treatment of multidrug-resistant tuberculosis: another missed opportunity?. Eur Respir J, 2017, 49(5): 1700738. doi:10.1183/13993003.00738-2017. |
[8] | Mallick JS, Nair P, Abbew ET, et al. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist, 2022, 4(2): dlac029. doi:10.1093/jacamr/dlac029. |
[9] | 孙慧娟, 苏伟, 陈伟. 利福平耐药结核病患者不良治疗结局及其影响因素研究进展. 结核与肺部疾病杂志, 2024, 5(6): 573-582. doi:10.19983/j.issn.2096-8493.2024111. |
[10] | Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3): 1601719. doi:10.1183/13993003.01719-2016. |
[11] |
Huitric E, Verhasselt P, Koul A, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother, 2010, 54(3): 1022-1028. doi:10.128/AAC.01611-09.
pmid: 20038615 |
[12] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8): 4590-4599. doi:10.1128/AAC.00753-16.
pmid: 27185800 |
[13] |
Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or beda-quiline. J Antimicrob Chemother, 2017, 72(3): 684-690. doi:10.1093/jac/dkw502.
pmid: 28031270 |
[14] | Salfinger M, Somoskövi A. Multidrug-resistant tuberculosis and bedaquiline. N Engl J Med, 2014, 371(25): 2435-2436. doi:10.1056/NEJMc1412235. |
[15] | Omar Shaheed V, Ismail F, Ndjeka N, et al. Bedaquiline-Resistant Tuberculosis Associated with Rv0678 Mutations. N Engl J Med, 2022, 386(1): 93-94. doi:10.1056/NEJMc2103049. |
[16] | Liu Y, Gao J, Du J, et al. Acquisition of clofazimine resis-tance following bedaquiline treatment for multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 102: 392-396. doi:10.1016/j.ijid.2020.10.081. |
[17] | Snobre J, Villellas MC, Coeck N, et al. Bedaquiline- and clofazimine-selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Sci Rep, 2023, 13(1): 10444. doi:10.1038/s41598-023-36955-y. |
[18] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024, 10(1): 22. doi:10.1038/s41572-024-00504-2.
pmid: 38523140 |
[19] | Cuthbert BJ, Mendoza J, de Miranda R, et al. The structure of Mycobacterium thermoresistibile MmpS 5 reveals a conserved disulfide bond across mycobacteria. Metallomics, 2024, 16(3):mfae011. doi:10.1093/mtomcs/mfae011. |
[20] | 史静华, 李东硕, 岑山, 等. 结核分枝杆菌MmpL5蛋白与贝达喹啉及氯法齐明相互作用的关键结合区域研究. 中国抗生素杂志, 2024, 49(8): 890-897. doi:10.13461/j.cnki.cja.007743. |
[21] | Bailo R, Bhatt A, Aínsa JA. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol, 2015, 96(3): 159-167. doi:10.1016/j.bcp.2015.05.001. |
[22] | Briffotaux J, Huang W, Wang X, et al. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb), 2017, 107: 13-19. doi:10.1016/j.tube.2017.08.001. |
[23] | Sandhu P, Akhter Y. The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. Int J Med Microbiol, 2015, 305(3): 413-423. doi:10.1016/j.ijmm.2015.03.005. |
[24] | Farnia P, Besharati S, Farina P, et al. The Role of Efflux Pumps transporter in Multi-drug Resistant Tuberculosis: Mycobacterial memberane protein (MmpL5). Int J Mycobacteriol, 2024, 13(1): 7-14. doi:0.4103/ijmy.ijmy_37_24. |
[25] | Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7): e102135. doi:10.1371/journal.pone.0102135. |
[26] | Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis (Edinb), 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003. |
[27] | Xu J, Li D, Shi J, et al. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M.tuberculosis. Antimicrob Agents Chemother (Bethesda), 2023, 67(7): e0153222. doi:10.1128/aac.01532-22. |
[28] | Yamamoto K, Nakata N, Mukai T, et al. Coexpression of MmpS5 and MmpL 5 Contributes to Both Efflux Transporter MmpL5 Trimerization and Drug Resistance in Mycobacterium tuberculosis. mSphere, 2021, 6(1): e00518-20. doi:10.1128/mSphere.00518-20. |
[29] | Jing W, Zhang F, Shang Y, et al. Deciphering the possible role of MmpL 7 efflux pump in SQ109 resistance in Mycobacterium tuberculosis. Ann Clin Microbiol Antimicrob, 2024, 23(1): 87. doi:10.1186/s12941-024-00746-8. |
[30] | 李东硕, 王彬, 陆宇, 等. 结核分枝杆菌膜蛋白MmpS5-MmpL5的表达及功能研究. 中国防痨杂志, 2022, 44(3): 227-233. doi:10.19982/j.issn.1000-6621.20210587. |
[31] | Matagne A, Joris B, Frère JM. Anomalous behaviour of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups. Biochem J, 1991, 280 (Pt 2): 553-556. doi:10.1042/bj2800553. |
[32] |
Hu CC, Ghabrial SA. The conserved, hydrophilic and arginine-rich N-terminal domain of cucumovirus coat proteins contributes to their anomalous electrophoretic mobilities in sodium dodecylsulfate-polyacrylamide gels. J Virol Methods, 1995, 55(3): 367-379. doi:10.1016/0166-934(95)00085-1.
pmid: 8609202 |
[33] |
Papageorgiou FT, Soteriadou KP. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun, 2002, 70(12): 6976-6986. doi:10.1128/IAI.70.12.6976-86.2002.
pmid: 12438377 |
[34] | Rath A, Glibowicka M, Nadeau VG, et al. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 2009, 106(6): 1760-1765. doi:10.073/pnas.0813167106. |
[35] |
Tiwari P, Kaila P, Guptasarma P. Understanding anomalous mobility of proteins on SDS-PAGE with special reference to the highly acidic extracellular domains of human E- and N-cadherins. Electrophoresis, 2019, 40(9): 1273-1281. doi:10.002/elps.201800219.
pmid: 30702765 |
[36] | Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci, 2024, 25(3): 1764. doi:10.3390/ijms25031764. |
[37] | Gan SD, Patel KR. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J Invest Dermatol, 2013, 133(9): e12. doi:0.1038/jid.2013.287. |
[38] | Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem, 2017, 170: 75-84. doi:10.1016/j.jinorgbio.2017.02.013. |
[39] | Vargas R Jr, Freschi L, Spitaleri A, et al. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resis-tance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2021, 65(11): e0116421. doi:10.1128/AAC.01164-21. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[2] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[3] | Wei Liuying, Jing Wei, Liu Zhifeng, Nie Wenjuan, Huang Xianzhen, Huang Lianpiao, Ban Fengting, Lin Yanrong, Yang Shixiong, Zhu Qingdong. Cost-effectiveness analysis of bedaquiline-containing regimens for the treatment of patients with multidrug/rifampicin-resistant pulmonary tuberculosis in Nanning: a retrospective cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 914-920. |
[4] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[5] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[6] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[7] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[8] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[9] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[10] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[11] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[12] | Cheng Wen, Zhu Hui, Fu Lei, Zhang Weiyan, Zhang Liqun, Lu Yu. Development and application of an HPLC-MS/MS method for simultaneous determination of bedaquiline, pretomanid, and linezolid in plasma [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 613-622. |
[13] | Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. |
[14] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[15] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||