Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (10): 1242-1248.doi: 10.19982/j.issn.1000-6621.20250214
• Special Topic • Previous Articles Next Articles
Liu Dongxin1, Wei Qiang1, Liu Jianjun2()
Received:
2025-05-21
Online:
2025-10-10
Published:
2025-09-29
Contact:
Liu Jianjun, Email: Supported by:
CLC Number:
Liu Dongxin, Wei Qiang, Liu Jianjun. The construction and application of Chinese Tuberculosis Strains Resource Bank[J]. Chinese Journal of Antituberculosis, 2025, 47(10): 1242-1248. doi: 10.19982/j.issn.1000-6621.20250214
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250214
[1] | 宋杨, 姜孟楠, 魏强. 加强和推进传染性疾病样本资源库建设. 中国科学(生命科学), 2024, 54(6):1082-1087. doi:10.1360/SSV-2023-0142. |
[2] | Peng H, Bilal M, Iqbal HMN. Improved Biosafety and Biosecurity Measures and/or Strategies to Tackle Laboratory-Acquired Infections and Related Risks. Int J Environ Res Public Health, 2018, 15(12):2697. doi:10.3390/ijerph15122697. |
[3] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[4] | Li T, Yan X, Du X, et al. Extrapulmonary tuberculosis in China: a national survey. Int J Infect Dis, 2023, 128:69-77. doi:10.1016/j.ijid.2022.12.005. |
[5] |
Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019, 17(9):533-545. doi:10.1038/s41579-019-0214-5.
pmid: 31209399 |
[6] | Merker M, Kohl TA, Niemann S, et al. The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. Adv Exp Med Biol, 2017, 1019:43-78. doi:10.1007/978-3-319-64371-7_3. |
[7] | Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol, 2018, 16(4):202-213. doi:10.1038/nrmicro.2018.8. |
[8] |
Stanley S, Spaulding CN, Liu Q, et al. Identification of bacterial determinants of tuberculosis infection and treatment outcomes: a phenogenomic analysis of clinical strains. Lancet Microbe, 2024, 5(6):e570-e580. doi:10.1016/S2666-5247(24)00022-3.
pmid: 38734030 |
[9] | Kanabalan RD, Lee LJ, Lee TY, et al. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res, 2021, 246:126674. doi:10.1016/j.micres.2020.126674. |
[10] | Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res, 2020, 152(3):185-226. doi:10.4103/ijmr.IJMR_902_20. |
[11] | Deqing L, Khan MT, Yaoju T, et al. Increasing trends of non-tuberculous mycobacteria clinical isolates in Guangzhou, China. Acta Trop, 2024, 260:107398. doi:10.1016/j.actatropica.2024.107398. |
[12] | Conyers LE, Saunders BM. Treatment for non-tuberculous mycobacteria: challenges and prospects. Front Microbiol, 2024, 15:1394220. doi:10.3389/fmicb.2024.1394220. |
[13] | 国家疾病预防控制局, 国家发展和改革委员会, 教育部, 等. 关于印发《全面消除麻风危害可持续发展规划(2024—2030年)》的通知. 2024-01-23. |
[14] | 邓星超. 麻风病低流行期防治对策探讨. 2019年全国麻风皮肤病学术年会论文集, 大连, 2019. 北京: 中国麻风病防治协会, 2019. |
[15] | 刘珏, 刘民. 关注传染病流行,防范跨境传播风险. 中华流行病学杂志, 2022, 43(7):1049-1052. doi:10.3760/cma.j.cn112338-20220125-00073. |
[16] | Islam MR, Sharma MK, KhunKhun R, et al. Whole genome sequencing-based identification of human tuberculosis caused by animal-lineage Mycobacterium orygis. J Clin Microbiol, 2023, 61(11):e0026023. doi:10.1128/jcm.00260-23. |
[17] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd ed. Geneva: World Health Organization, 2023. |
[18] | 李志丽, 刘宇红. 《世界卫生组织结核病整合指南模块6:结核病及其共患病-HIV》解读. 中国防痨杂志, 2024, 46(8):869-873. doi:10.19982/j.issn.1000-6621.20240225. |
[19] | 卢水华. 关注结核病共患病已成为公共卫生的需要. 结核与肺部疾病杂志, 2022, 3(4):255-260. doi:10.19983/j.issn.2096-8493.20220107. |
[20] | Ding XY, Li SS, Geng YM, et al. Programmable Base Editing in Mycobacterium tuberculosis Using an Engineered CRISPR RNA-Guided Cytidine Deaminase. Front Genome Ed, 2021, 3:734436. doi:10.3389/fgeed.2021.734436. |
[21] |
Alonso MN, Malaga W, Mc Neil M, et al. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol, 2020, 171(5-6):203-210. doi:10.1016/j.resmic.2020.04.001.
pmid: 32283218 |
[22] | Moraes L, Trentini MM, Fousteris D, et al. CRISPR/Cas 9 Approach to Generate an Auxotrophic BCG Strain for Unmarked Expression of LTAK63 Adjuvant: A Tuberculosis Vaccine Candidate. Front Immunol, 2022, 13:867195. doi:10.3389/fimmu.2022.867195. |
[23] | Pei S, Song Z, Yang W, et al. The catalogue of Mycobacterium tuberculosis mutations associated with drug resistance to 12 drugs in China from a nationwide survey: a genomic analysis. Lancet Microbe, 2024, 5(11):100899. doi:10.1016/S2666-5247(24)00131-9. |
[24] | Perdigão J, Silva H, Machado D, et al. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics, 2014, 15(1):991. doi:10.1186/1471-2164-15-991. |
[25] | Sreevatsan S, Pan X, Stockbauer KE, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A, 1997, 94(18):9869-9874. doi:10.1073/pnas.94.18.9869. |
[26] |
Liu Q, Zhu J, Dulberger CL, et al. Tuberculosis treatment failure associated with evolution of antibiotic resilience. Science, 2022, 378(6624):1111-1118. doi:10.1126/science.abq2787.
pmid: 36480634 |
[27] |
Wilson DJ, CRyPTIC Consortium. GenomegaMap: Within-Species Genome-Wide dN/dS Estimation from over 10,000 Genomes. Mol Biol Evol, 2020, 37(8):2450-2460. doi:10.1093/molbev/msaa069.
pmid: 32167543 |
[28] | Liu D, Huang F, Li Y, et al. Transmission characteristics in Tuberculosis by WGS: nationwide cross-sectional surveillance in China. Emerg Microbes Infect, 2024, 13(1):2348505. doi:10.1080/22221751.2024.2348505. |
[29] | Zhao B, Liu C, Fan J, et al. Transmission and Drug Resis-tance Genotype of Multidrug-Resistant or Rifampicin-Resistant Mycobacterium tuberculosis in Chongqing, China. Microbiol Spectr, 2022, 10(5):e0240521. doi:10.1128/spectrum.02405-21. |
[30] | Walker TM, Choisy M, Dedicoat M, et al. Mycobacterium tuberculosis transmission in Birmingham, UK, 2009-19: An observational study. Lancet Reg Health Eur, 2022, 17:100361. doi:10.1016/j.lanepe.2022.100361. |
[31] |
Del Río JS, Svobodova M, Bustos P, et al. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification. Anal Bioanal Chem, 2016, 408(30):8611-8620. doi:10.1007/s00216-016-9639-0.
pmid: 27220649 |
[32] | Lyu L, Li Z, Pan L, et al. Evaluation of digital PCR assay in detection of M.tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis, 2020, 20(1):657. doi:10.1186/s12879-020-05375-y. |
[33] | Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine, 2020, 53:102686. doi:10.1016/j.ebiom.2020.102686. |
[34] | Qiu X, Zhong P, Yue L, et al. Spatial transcriptomic sequencing reveals immune microenvironment features of Mycobacterium tuberculosis granulomas in lung and omentum. Theranostics, 2024, 14(16):6185-6201. doi:10.7150/thno.99038. |
[35] | Barbier M, Wirth T. The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. Microbiol Spectr, 2016, 4(4). doi:10.1128/microbiolspec.TBTB2-0008-2016. |
[36] | Chen H, He L, Cai C, et al. Characteristics of distribution of Mycobacterium tuberculosis lineages in China. Sci China Life Sci, 2018, 61(6):651-659. doi:10.1007/s11427-017-9243-0. |
[37] | Zakham F, Sironen T, Vapalahti O, et al. Pan and Core Genome Analysis of 183 Mycobacterium tuberculosis Strains Revealed a High Inter-Species Diversity among the Human Adapted Strains. Antibiotics (Basel), 2021, 10(5):500. doi:10.3390/antibiotics10050500. |
[38] | Negrete-Paz AM, Vázquez-Marrufo G, Vázquez-Garcidueñas MS. Whole-genome comparative analysis at the lineage/sublineage level discloses relationships between Mycobacterium tuberculosis genotype and clinical phenotype. PeerJ, 2021, 9:e12128. doi:10.7717/peerj.12128. |
[39] | Liu Z, Li W, Zhang Y, et al. Analysis of Clinical Factors, Bacterial Genotyping, and Drug Resistance for Spinal Tuberculosis in South-Central China. Biomed Res Int, 2020, 2020:9871390. doi:10.1155/2020/9871390. |
[40] | 袁伟, 秦川. 结核病动物模型研究进展. 中国比较医学杂志, 2010, 20(9):55-59. |
[41] | Verkhivker G, Alshahrani M, Gupta G, et al. From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on “Allosteric Intersection” of Biochemical and Big Data Approaches. Int J Mol Sci, 2023, 24(9):7747. doi:10.3390/ijms24097747. |
[42] | 国家疾病预防控制局, 国家卫生健康委员会, 国家发展和改革委员会, 等. 关于印发《全国结核病防治规划(2024—2030年)》的通知. 国疾控传防发〔2024〕19号. 2025-11-28. |
[43] | Hamilton CD, Swaminathan S, Christopher DJ, et al. RePORT International: Advancing Tuberculosis Biomarker Research Through Global Collaboration. Clin Infect Dis, 2015, 61Suppl 3(Suppl 3):S155-S159. doi:10.1093/cid/civ611. |
[1] | Gao Lei, Cheng Shiming, Jin Qi, Liu Jianjun. Occult transmission of asymptomatic tuberculosis and iterative renewal of prevention and control strategies [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1135-1139. |
[2] | Yan Yueming, Chen Meng, Li Xuekui, Wang Zhongdong, Sun Haiyan, Dai Xiaoqi, Song Song, Xu Honghong, Zhang Menghan, Wang Zhi, Lyu Kunzheng. Prevalence and influencing factors of latent tuberculosis infection among elderly residents in nursing homes in Qingdao [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1148-1153. |
[3] | Zhu Tingting, Wang Mingzhe, Zulikatiayi Abudula, Gulina Badeerhan, Kaideliyan Abuduwaili, Wang Le. Preliminary analysis of the construction of mouse models infected with Xinjiang Uygur Autonomous Region Mycobacterium tuberculosis CAS lineage and H37Rv standard strain [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1187-1195. |
[4] | Zhang Xiaoke, Chen Ling. Research progress on the anti-tuberculosis effect and mechanism of cinnamaldehyde on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1220-1226. |
[5] | Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. |
[6] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[7] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[8] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
[9] | Zheng Zhuangbin, Bi Lijun, Zhang Liqun. Study on the interaction between Mycobacterium tuberculosis membrane protein MmpS5/MmpL5 and bedaquiline [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 884-892. |
[10] | Chen Shuangshuang, Wang Nenhan, Zhao Yanfeng, Fan Ruifang, Tian Lili, Chen Hao, Luo Ping, Li Jie, Li Chuanyou, Dai Xiaowei. Application value of MeltPro two-step method in tuberculosis diagnosis and drug resistance screening [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 893-900. |
[11] | Yao Xiuyu, Du Ying, Chen Sijie, Geng Hong, Gao Lei. Common nursing problems and countermeasures or suggestions for home isolation and treatment of patients with infectious pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 681-686. |
[12] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[13] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[14] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[15] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||