Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (3): 253-259.doi: 10.19982/j.issn.1000-6621.20220391
• Special Topic • Previous Articles Next Articles
Xia Hui1, Wang Ruibai2(), Zhao Yanlin1
Received:
2022-10-09
Online:
2023-03-10
Published:
2023-03-07
Contact:
Wang Ruibai
E-mail:wangruibai@icdc.cn
CLC Number:
Xia Hui, Wang Ruibai, Zhao Yanlin. Differential diagnosis between latent tuberculosis infection and active tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(3): 253-259. doi: 10.19982/j.issn.1000-6621.20220391
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220391
[1] | World Health Organization.Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] |
高磊, 张慧, 胡茂桂, 等. 基于多中心调查数据和空间统计模型的全国结核分枝杆菌潜伏感染率估算. 中国防痨杂志, 2022, 44(1): 54-59. doi:10.19982/j.issn.1000-6621.20210661.
doi: 10.19982/j.issn.1000-6621.20210661 |
[3] |
Behr MA, Edelstein PH, Ramakrishnan L. Is Mycobacterium tuberculosis infection life long? BMJ, 2019, 367: I5770. doi:10.1136/bmj.15770.
doi: 10.1136/bmj.15770 |
[4] |
Rozot V, Vigano S, Mazza-Stalder J, et al. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol, 2013, 43(6): 1568-1577. doi:10.1002/eji.201243262.
doi: 10.1002/eji.201243262 URL |
[5] |
Petruccioli E, Scriba TJ, Petrone L, et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J, 2016, 48(6): 1751-1763. doi:10.1183/13993003.01012-2016.
doi: 10.1183/13993003.01012-2016 pmid: 27836953 |
[6] | World Health Organization. WHO consolidated guidelines on tuberculosis: module 3: diagnosis: tests for TB infection. Geneva: World Health Organization, 2022. |
[7] |
Chee CBE, Reves R, Zhang Y, et al. Latent tuberculosis infection: Opportunities and challenges. Respirology, 2018, 23(10): 893-900. doi:10.1111/resp.13346.
doi: 10.1111/resp.13346 pmid: 29901251 |
[8] |
Lillebaek T, Dirksen A, Baess I, et al. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J Infect Dis, 2002, 185(3): 401-404. doi:10.1086/338342.
doi: 10.1086/338342 pmid: 11807725 |
[9] |
Achkar JM, Jenny-Avital ER. Incipient and subclinical tuberculosis: defining early disease states in the context of host immune response. J Infect Dis, 2011, 204 Suppl 4 (Suppl 4): S1179-S1186. doi:10.1093/infdis/jir451.
doi: 10.1093/infdis/jir451 |
[10] |
Andersen P, Munk ME, Pollock JM, et al. Specific immune-based diagnosis of tuberculosis. Lancet, 2000, 356(9235): 1099-1104. doi:10.1016/s0140-6736(00)02742-2.
doi: 10.1016/s0140-6736(00)02742-2 pmid: 11009160 |
[11] |
Meier NR, Jacobsen M, Ottenhoff THM, et al. A Systematic Review on Novel Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis. Front Immunol, 2018, 9: 2476. doi:10.3389/fimmu.2018.02476.
doi: 10.3389/fimmu.2018.02476 URL |
[12] |
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol, 2021, 12: 745592. doi:10.3389/fmicb.2021.745592.
doi: 10.3389/fmicb.2021.745592 URL |
[13] |
Estévez O, Anibarro L, Garet E, et al. Identification of candidate host serum and saliva biomarkers for a better diagnosis of active and latent tuberculosis infection. PLoS One, 2020, 15(7): e0235859. doi:10.1371/journal.pone.0235859.
doi: 10.1371/journal.pone.0235859 |
[14] |
Fisher KL, Moodley D, Rajkumar-Bhugeloo K, et al. Elevated IP-10 at the Protein and Gene Level Associates With Pulmonary TB. Front Cell Infect Microbiol, 2022, 12: 908144. doi:10.3389/fcimb.2022.908144.
doi: 10.3389/fcimb.2022.908144 URL |
[15] |
Sun Q, Wei W, Sha W. Potential Role for Mycobacterium tuberculosis Specific IL-2 and IFN-γ Responses in Discriminating between Latent Infection and Active Disease after Long-Term Stimulation. PLoS One, 2016, 11(12): e0166501. doi:10.1371/journal.pone.0166501.
doi: 10.1371/journal.pone.0166501 |
[16] |
Qiu B, Liu Q, Li Z, et al. Evaluation of cytokines as a biomarker to distinguish active tuberculosis from latent tuberculosis infection: a diagnostic meta-analysis. BMJ Open, 2020, 10(10): e039501. doi:10.1136/bmjopen-2020-039501.
doi: 10.1136/bmjopen-2020-039501 URL |
[17] |
贾红彦, 董静, 张宗德, 等. 结核分枝杆菌感染的免疫学检测技术研究进展及临床应用现状. 中国防痨杂志, 2022, 44(7): 720-726. doi:10.19982/j.issn.1000-6621.20220103.
doi: 10.19982/j.issn.1000-6621.20220103 |
[18] |
Riou C, Berkowitz N, Goliath R, et al. Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals. Front Immunol, 2017, 8: 968. doi:10.3389/fimmu.2017.00968.
doi: 10.3389/fimmu.2017.00968 URL |
[19] |
Garand M, Goodier M, Owolabi O, et al. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Front Immunol, 2018, 9: 257. doi:10.3389/fimmu.2018.00257.
doi: 10.3389/fimmu.2018.00257 URL |
[20] |
Silveira-Mattos PS, Barreto-Duarte B, Vasconcelos B, et al. Differential Expression of Activation Markers by Mycobacterium tuberculosis-specific CD4+ T Cell Distinguishes Extrapulmonary From Pulmonary Tuberculosis and Latent Infection. Clin Infect Dis, 2020, 71(8): 1905-1911. doi:10.1093/cid/ciz1070.
doi: 10.1093/cid/ciz1070 pmid: 31665254 |
[21] |
Mantei A, Meyer T, Schürmann M, et al. Mycobacterium tuberculosis-specific CD 4 T-cell scoring discriminates tuberculosis infection from disease. Eur Respir J, 2022, 60(1): 2101780. doi:10.1183/13993003.01780-2021.
doi: 10.1183/13993003.01780-2021 |
[22] |
Latorre I, Fernández-Sanmartín MA, Muriel-Moreno B, et al. Study of CD27 and CCR4 Markers on Specific CD4+ T-Cells as Immune Tools for Active and Latent Tuberculosis Management. Front Immunol, 2018, 9: 3094. doi:10.3389/fimmu.2018.03094.
doi: 10.3389/fimmu.2018.03094 pmid: 30687314 |
[23] |
Luo Y, Xue Y, Mao L, et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front Immunol, 2021, 12: 721013. doi:10.3389/fimmu.2021.721013.
doi: 10.3389/fimmu.2021.721013 URL |
[24] |
Acharya MP, Pradeep SP, Murthy VS, et al. CD38+CD27-TNF-α+ on Mtb-specific CD4+ T Cells Is a Robust Biomarker for Tuberculosis Diagnosis. Clin Infect Dis, 2021, 73(5): 793-801. doi:10.1093/cid/ciab144.
doi: 10.1093/cid/ciab144 pmid: 34492697 |
[25] |
Corrêa RDS, Rodrigues LS, Pereira LHL, et al. Neutrophil CD64 expression levels in IGRA-positive individuals distinguish latent tuberculosis from active disease. Mem Inst Oswaldo Cruz, 2019, 114: e180579. doi:10.1590/0074-02760180579.
doi: 10.1590/0074-02760180579 URL |
[26] |
La Manna MP, Orlando V, Dieli F, et al. Quantitative and qualitative profiles of circulating monocytes may help identi-fying tuberculosis infection and disease stages. PLoS One, 2017, 12(2): e0171358. doi:10.1371/journal.pone.0171358.
doi: 10.1371/journal.pone.0171358 |
[27] |
Estévez O, Anibarro L, Garet E, et al. Multi-parameter flow cytometry immunophenotyping distinguishes different stages of tuberculosis infection. J Infect, 2020, 81(1): 57-71. doi:10.1016/j.jinf.2020.03.064.
doi: S0163-4453(20)30218-8 pmid: 32330526 |
[28] |
Arrigucci R, Lakehal K, Vir P, et al. Active Tuberculosis Is Characterized by Highly Differentiated Effector Memory Th1 Cells. Front Immunol, 2018, 9: 2127. doi:10.3389/fimmu.2018.02127.
doi: 10.3389/fimmu.2018.02127 pmid: 30283456 |
[29] |
Luo Y, Xue Y, Cai Y, et al. Lymphocyte Non-Specific Function Detection Facilitating the Stratification of Mycobacterium tuberculosis Infection. Front Immunol, 2021, 12: 641378. doi:10.3389/fimmu.2021.641378.
doi: 10.3389/fimmu.2021.641378 URL |
[30] |
Grassi G, Vanini V, De Santis F, et al. PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Front Immunol, 2021, 12: 594376. doi:10.3389/fimmu.2021.594376.
doi: 10.3389/fimmu.2021.594376 URL |
[31] |
Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309): 973-977. doi:10.1038/nature09247.
doi: 10.1038/nature09247 URL |
[32] |
Leong S, Zhao Y, Joseph NM, et al. Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India. Tuberculosis (Edinb), 2018, 109: 41-51. doi:10.1016/j.tube.2018.01.002.
doi: 10.1016/j.tube.2018.01.002 URL |
[33] |
Jacobsen M, Repsilber D, Gutschmidt A, et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl), 2007, 85(6): 613-621. doi:10.1007/s00109-007-0157-6.
doi: 10.1007/s00109-007-0157-6 URL |
[34] |
Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med, 2013, 10(10): e1001538. doi:10.1371/journal.pmed.1001538.
doi: 10.1371/journal.pmed.1001538 |
[35] |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035): 2312-2322. doi:10.1016/S0140-6736(15)01316-1.
doi: S0140-6736(15)01316-1 pmid: 27017310 |
[36] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224. doi:10.1016/S2213-2600(16)00048-5.
doi: 10.1016/S2213-2600(16)00048-5 pmid: 26907218 |
[37] |
Warsinske HC, Rao AM, Moreira FMF, et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open, 2018, 1(6): e183779. doi:10.1001/jamanetworkopen.2018.3779.
doi: 10.1001/jamanetworkopen.2018.3779 URL |
[38] |
Petrilli JD, Araújo LE, da Silva LS, et al. Whole blood mRNA expression-based targets to discriminate active tuberculosis from latent infection and other pulmonary diseases. Sci Rep, 2020, 10(1): 22072. doi:10.1038/s41598-020-78793-2.
doi: 10.1038/s41598-020-78793-2 pmid: 33328540 |
[39] |
Kim H, Wang X, Jin P. Developing DNA methylation-based diagnostic biomarkers. J Genet Genomics, 2018, 45(2): 87-97. doi:10.1016/j.jgg.2018.02.003.
doi: S1673-8527(18)30027-4 pmid: 29496486 |
[40] |
Gauba K, Gupta S, Shekhawat J, et al. Immunomodulation by epigenome alterations in Mycobacterium tuberculosis infection. Tuberculosis (Edinb), 2021, 128: 102077. doi:10.1016/j.tube.2021.102077.
doi: 10.1016/j.tube.2021.102077 URL |
[41] |
Du Y, Gao X, Yan J, et al. Relationship between DNA Methy-lation Profiles and Active Tuberculosis Development from Latent Infection: a Pilot Study in Nested Case-Control Design. Microbiol Spectr, 2022, 10(3): e0058622. doi:10.1128/spectrum.00586-22.
doi: 10.1128/spectrum.00586-22 |
[42] |
Wang C, Yang S, Sun G, et al. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One, 2011, 6(10): e25832. doi:10.1371/journal.pone.0025832.
doi: 10.1371/journal.pone.0025832 URL |
[43] |
Looney M, Lorenc R, Halushka MK, et al. Key Macrophage Responses to Infection With Mycobacterium tuberculosis Are Co-Regulated by microRNAs and DNA Methylation. Front Immunol, 2021, 12: 685237. doi:10.3389/fimmu.2021.685237.
doi: 10.3389/fimmu.2021.685237 URL |
[44] |
de Araujo LS, Ribeiro-Alves M, Leal-Calvo T, et al. Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection. mBio, 2019, 10(6): e01037-19. doi:10.1128/mBio.01037-19.
doi: 10.1128/mBio.01037-19 |
[45] |
Lu LL, Chung AW, Rosebrock TR, et al. A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167(2): 433-443.e14. doi:10.1016/j.cell.2016.08.072.
doi: S0092-8674(16)31170-9 pmid: 27667685 |
[46] |
Grace PS, Dolatshahi S, Lu LL, et al. Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Front Immunol, 2021, 12: 679973. doi:10.3389/fimmu.2021.679973.
doi: 10.3389/fimmu.2021.679973 URL |
[47] |
Broger T, Basu Roy R, Filomena A, et al. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents. Clin Infect Dis, 2017, 64(7): 947-955. doi:10.1093/cid/cix023.
doi: 10.1093/cid/cix023 pmid: 28362937 |
[48] |
Lubbers R, Sutherland JS, Goletti D, et al. Complement Component C1q as Serum Biomarker to Detect Active Tuberculosis. Front Immunol, 2018, 9: 2427. doi:10.3389/fimmu.2018.02427.
doi: 10.3389/fimmu.2018.02427 pmid: 30405622 |
[49] |
Fernández-Carballo BL, Broger T, Wyss R, et al. Toward the Development of a Circulating Free DNA-Based In Vitro Diagnostic Test for Infectious Diseases: a Review of Evidence for Tuberculosis. J Clin Microbiol, 2019, 57(4): e01234-18. doi:10.1128/JCM.01234-18.
doi: 10.1128/JCM.01234-18 |
[50] |
Pan SW, Su WJ, Chan YJ, et al. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One, 2021, 16(6): e0253879. doi:10.1371/journal.pone.0253879.
doi: 10.1371/journal.pone.0253879 URL |
[51] |
Burnham P, Dadhania D, Heyang M, et al. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun, 2018, 9(1): 2412. doi:10.1038/s41467-018-04745-0.
doi: 10.1038/s41467-018-04745-0 pmid: 29925834 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[5] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[6] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[7] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[8] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[9] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[10] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[11] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[12] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[13] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[14] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
[15] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||