Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (9): 954-959.doi: 10.19982/j.issn.1000-6621.20220243
• Review Articles • Previous Articles Next Articles
Wu Wenqi1, Zhong Jianqiu1, He Juan1, Deng Guofang2, Wang Qingwen1()
Received:
2022-06-27
Online:
2022-09-10
Published:
2022-09-05
Contact:
Wang Qingwen
E-mail:wqw_sw@163.com
Supported by:
CLC Number:
Wu Wenqi, Zhong Jianqiu, He Juan, Deng Guofang, Wang Qingwen. The research progress of the reactivation of latent tuberculosis infection in patients with rheumatic diseases[J]. Chinese Journal of Antituberculosis, 2022, 44(9): 954-959. doi: 10.19982/j.issn.1000-6621.20220243
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220243
[1] |
Zeng QY, Chen R, Darmawan J, et al. Rheumatic diseases in China. Arthritis Res Ther, 2008, 10(1):R17. doi: 10.1186/ar2368.
doi: 10.1186/ar2368 URL |
[2] |
da Silva MA, Martins A, Teixeira AA, et al. Impact of biological agents and tissue engineering approaches on the treatment of rheumatic diseases. Tissue Eng Part B Rev, 2010, 16(3):331-339. doi: 10.1089/ten.TEB.2009.0536.
doi: 10.1089/ten.TEB.2009.0536 URL |
[3] |
Scriba TJ, Coussens AK, Fletcher HA. Human Immunology of Tuberculosis. Microbiol Spectr, 2017, 5(1). doi: 10.1128/microbiolspec.TBTB2-0016-2016.
doi: 10.1128/microbiolspec.TBTB2-0016-2016 |
[4] |
Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol, 2012, 7:353-384. doi: 10.1146/annurev-pathol-011811-132458.
doi: 10.1146/annurev-pathol-011811-132458 URL |
[5] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[6] | Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm Rep, 2000, 49(RR-6):1-51. |
[7] |
Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis[J/OL]. Lancet Respir Med, 2017[2022-06-23]. doi: 10.1016/S2213-2600(17)30079-6. Online ahead of print.
doi: 10.1016/S2213-2600(17)30079-6 |
[8] |
Cantini F, Nannini C, Niccoli L, et al. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics. Mediators Inflamm, 2017, 2017: 8909834. doi: 10.1155/2017/8909834.
doi: 10.1155/2017/8909834 |
[9] |
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4):10.1128/microbiolspec.GPP3-0022-2018. doi: 10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1128/microbiolspec.GPP3-0022-2018 URL |
[10] |
Eum SY, Kong JH, Hong MS, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010, 137(1):122-128. doi: 10.1378/chest.09-0903.
doi: 10.1378/chest.09-0903 URL |
[11] |
Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol, 2009, 11(8):1170-1178. doi: 10.1111/j.1462-5822.2009.01335.x.
doi: 10.1111/j.1462-5822.2009.01335.x. URL |
[12] |
Chen M, Gan H, Remold HG. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol, 2006, 176(6):3707-3716. doi: 10.4049/jimmunol.176.6.3707.
doi: 10.4049/jimmunol.176.6.3707 URL |
[13] |
Wolf AJ, Linas B, Trevejo-Nuñez GJ, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol, 2007, 179(4):2509-2519. doi: 10.4049/jimmunol.179.4.2509.
doi: 10.4049/jimmunol.179.4.2509 URL |
[14] |
Chan WL, Rodgers A, Hancock RD, et al. Protection in simian immunodeficiency virus-vaccinated monkeys correlates with anti-HLA class Ⅰ antibody response. J Exp Med, 1992, 176(4):1203-1207. doi: 10.1084/jem.176.4.1203.
doi: 10.1084/jem.176.4.1203 pmid: 1402662 |
[15] |
Goletti D, Petruccioli E, Romagnoli A, et al. Autophagy in Mycobacterium tuberculosis infection: a passepartout to flush the intruder out? Cytokine Growth Factor Rev, 2013, 24(4):335-343. doi: 10.1016/j.cytogfr.2013.01.002.
doi: 10.1016/j.cytogfr.2013.01.002 URL |
[16] |
Stenger S, Mazzaccaro RJ, Uyemura K, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science, 1997, 276(5319):1684-1687. doi: 10.1126/science.276.5319.1684.
doi: 10.1126/science.276.5319.1684 pmid: 9180075 |
[17] |
Ernst WA, Thoma-Uszynski S, Teitelbaum R, et al. Granuly-sin, a T cell product, kills bacteria by altering membrane permeability. J Immunol, 2000, 165(12):7102-7108. doi: 10.4049/jimmunol.165.12.7102.
doi: 10.4049/jimmunol.165.12.7102 pmid: 11120840 |
[18] |
Loxton AG. Bcells and their regulatory functions during Tuberculosis: Latency and active disease. Mol Immunol, 2019, 111:145-151. doi: 10.1016/j.molimm.2019.04.012.
doi: S0161-5890(18)30870-8 pmid: 31054408 |
[19] |
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 2010, 28:445-489. doi: 10.1146/annurev-immunol-030409-101212.
doi: 10.1146/annurev-immunol-030409-101212 URL |
[20] |
van Rensburg IC, Wagman C, Stanley K, et al. Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA. Oncotarget, 2017, 8(2): 2037-2043. doi: 10.18632/oncotarget.12184.
doi: 10.18632/oncotarget.12184 pmid: 27682872 |
[21] |
du Plessis WJ, Kleynhans L, du Plessis N, et al. The Functional Response of B Cells to Antigenic Stimulation: A Preli-minary Report of Latent Tuberculosis. PLoS One, 2016, 11(4):e0152710. doi: 10.1371/journal.pone.0152710.
doi: 10.1371/journal.pone.0152710 URL |
[22] |
Khan N, Vidyarthi A, Amir M, et al. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol, 2017, 43(2):133-141. doi: 10.1080/1040841X.2016.1185603.
doi: 10.1080/1040841X.2016.1185603 URL |
[23] |
Foreman TW, Mehra S, LoBato DN, et al. CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A, 2016, 113(38):E5636-E5644. doi: 10.1073/pnas.1611987113.
doi: 10.1073/pnas.1611987113 |
[24] |
Sutherland JS, Lalor MK, Black GF, et al. Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa. PLoS One, 2013, 8(9):e74080. doi: 10.1371/journal.pone.0074080.
doi: 10.1371/journal.pone.0074080 URL |
[25] |
Riaño F, Arroyo L, París S, et al. T cell responses to DosR and Rpf proteins in actively and latently infected individuals from Colombia. Tuberculosis (Edinb), 2012, 92(2):148-159. doi: 10.1016/j.tube.2011.12.005.
doi: 10.1016/j.tube.2011.12.005 URL |
[26] |
Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol, 2021, 22(1):10-18. doi: 10.1038/s41590-020-00816-x.
doi: 10.1038/s41590-020-00816-x URL |
[27] |
Blank CU, Haining WN, Held W, et al. Defining ’T cell exhaustion’. Nat Rev Immunol, 2019, 19(11):665-674. doi: 10.1038/s41577-019-0221-9.
doi: 10.1038/s41577-019-0221-9 URL |
[28] |
Frenz T, Grabski E, Buschjäger D, et al. CD4+ T cells in patients with chronic inflammatory rheumatic disorders show distinct levels of exhaustion. J Allergy Clin Immunol, 2016, 138(2):586-589.e10. doi: 10.1016/j.jaci.2016.04.013.
doi: 10.1016/j.jaci.2016.04.013 URL |
[29] |
Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5):541-547. doi: 10.1016/1074-7613(95)90125-6.
doi: 10.1016/1074-7613(95)90125-6 pmid: 7584144 |
[30] |
Waterhouse P, Penninger JM, Timms E, et al. Lymphopro-liferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238):985-988. doi: 10.1126/science.270.5238.985.
doi: 10.1126/science.270.5238.985 pmid: 7481803 |
[31] |
Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, 322(5899):271-275. doi: 10.1126/science.1160062.
doi: 10.1126/science.1160062 URL |
[32] | 先声药业集团有限公司. 阿巴西普药物说明书[EB/OL].[2022-06-23]. https://packageinserts.bms.com/pi/pi_orencia.pdf. |
[33] |
Tang S, Cui H, Yao L, et al. Increased cytokines response in patients with tuberculosis complicated with chronic obstructive pulmonary disease. PLoS One, 2013, 8(4):e62385. doi: 10.1371/journal.pone.0062385.
doi: 10.1371/journal.pone.0062385 URL |
[34] |
Kumar NP, Moideen K, Banurekha VV, et al. Plasma Proinflammatory Cytokines Are Markers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. Open Forum Infect Dis, 2019, 6(7):ofz257. doi: 10.1093/ofid/ofz257.
doi: 10.1093/ofid/ofz257 URL |
[35] |
Lyadova IV, Panteleev AV. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm, 2015, 2015: 854507. doi: 10.1155/2015/854507.
doi: 10.1155/2015/854507 |
[36] |
Herrera M, Vera C, Keynan Y, et al. Gaps in Study Design for Immune Parameter Research for Latent Tuberculosis Infection: A Systematic Review. J Immunol Res, 2020, 2020:8074183. doi: 10.1155/2020/8074183.
doi: 10.1155/2020/8074183 |
[37] |
Gardam MA, Keystone EC, Menzies R, et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis, 2003, 3(3):148-155. doi: 10.1016/s1473-3099(03)00545-0.
doi: 10.1016/s1473-3099(03)00545-0 URL |
[38] |
Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol, 2006, 2(11):602-610. doi: 10.1038/ncprheum0336.
doi: 10.1038/ncprheum0336 pmid: 17075599 |
[39] |
Kaneko H, Yamada H, Mizuno S, et al. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest, 1999, 79(4):379-386.
pmid: 10211990 |
[40] |
Bruns H, Meinken C, Schauenberg P, et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest, 2009, 119(5):1167-1177. doi: 10.1172/JCI38482.
doi: 10.1172/JCI38482 URL |
[41] |
Nogueira M, Warren RB, Torres T. Risk of tuberculosis reactivation with interleukin (IL)-17 and IL-23 inhibitors in psoriasis-time for a paradigm change. J Eur Acad Dermatol Venereol, 2021, 35(4):824-834. doi: 10.1111/jdv.16866.
doi: 10.1111/jdv.16866 URL |
[42] |
Skattum L, van Deuren M, van der Poll T, et al. Complement deficiency states and associated infections. Mol Immunol, 2011, 48(14):1643-1655. doi: 10.1016/j.molimm.2011.05.001.
doi: 10.1016/j.molimm.2011.05.001 URL |
[43] |
Esmail H, Lai RP, Lesosky M, et al. Complement pathway gene activation and rising circulating immune complexes charac-terize early disease in HIV-associated tuberculosis. Proc Natl Acad Sci U S A, 2018, 115(5):E964-E973. doi: 10.1073/pnas.1711853115.
doi: 10.1073/pnas.1711853115 |
[44] |
Schlesinger LS. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol, 1993, 150(7):2920-2930.
pmid: 8454864 |
[45] |
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. Medicina (Kaunas), 2021, 57(2):84. doi: 10.3390/medicina57020084.
doi: 10.3390/medicina57020084 |
[46] |
Kang I, Park SH. Infectious complications in SLE after immunosuppressive therapies. Curr Opin Rheumatol, 2003, 15(5):528-534. doi: 10.1097/00002281-200309000-00002.
doi: 10.1097/00002281-200309000-00002 URL |
[47] |
Gibney KB, MacGregor L, Leder K, et al. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. Clin Infect Dis, 2008, 46(3):443-446. doi: 10.1086/525268.
doi: 10.1086/525268 URL |
[48] |
Realegeno S, Modlin RL. Shedding light on the vitamin D-tuberculosis-HIV connection. Proc Natl Acad Sci U S A, 2011, 108(47):18861-18862. doi: 10.1073/pnas.1116513108.
doi: 10.1073/pnas.1116513108 pmid: 22084116 |
[49] |
Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768):1770-1773. doi: 10.1126/science.1123933.
doi: 10.1126/science.1123933 URL |
[50] |
Adams JS, Ren S, Liu PT, et al. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J Immunol, 2009, 182(7):4289-4295. doi: 10.4049/jimmunol.0803736.
doi: 10.4049/jimmunol.0803736 pmid: 19299728 |
[51] |
Raqib R, Ly A, Akhtar E, et al. Prenatal vitamin D supplementation suppresses LL-37 peptide expression in ex vivo activated neonatal macrophages but not their killing capacity. Br J Nutr, 2014, 112(6):908-915. doi: 10.1017/S0007114514001512.
doi: 10.1017/S0007114514001512 URL |
[52] |
Martineau AR, Wilkinson RJ, Wilkinson KA, et al. A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med, 2007, 176(2):208-213. doi: 10.1164/rccm.200701-007OC.
doi: 10.1164/rccm.200701-007OC URL |
[53] |
Martineau AR, Wilkinson RJ, Wilkinson KA, et al. A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med, 2007, 176(2):208-213. doi: 10.1164/rccm.200701-007OC.
doi: 10.1164/rccm.200701-007OC URL |
[54] |
Nguyen Y, Sigaux J, Letarouilly JG, et al. Efficacy of Oral Vitamin Supplementation in Inflammatory Rheumatic Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 2020, 13(1):107. doi: 10.3390/nu13010107.
doi: 10.3390/nu13010107 URL |
[55] |
Zheng R, Gonzalez A, Yue J, et al. Efficacy and Safety of Vitamin D Supplementation in Patients With Systemic Lupus Erythematosus: A Meta-analysis of Randomized Controlled Trials. Am J Med Sci, 2019, 358(2):104-114. doi: 10.1016/j.amjms.2019.04.020.
doi: 10.1016/j.amjms.2019.04.020 URL |
[56] |
Diao N, Yang B, Yu F. Effect of vitamin D supplementation on knee osteoarthritis: A systematic review and meta-analysis of randomized clinical trials. Clin Biochem, 2017, 50(18):1312-1316. doi: 10.1016/j.clinbiochem.2017.09.001.
doi: 10.1016/j.clinbiochem.2017.09.001 URL |
[57] |
Carvalho JF, Blank M, Kiss E, et al. Anti-vitamin D, vitamin D in SLE: preliminary results. Ann N Y Acad Sci, 2007, 1109:550-557. doi: 10.1196/annals.1398.061.
doi: 10.1196/annals.1398.061 URL |
[58] |
Brassard P, Lowe AM, Bernatsky S, et al. Rheumatoid arthritis, its treatments, and the risk of tuberculosis in Quebec, Canada. Arthritis Rheum, 2009, 61(3):300-304. doi: 10.1002/art.24476.
doi: 10.1002/art.24476 URL |
[59] |
Jick SS, Lieberman ES, Rahman MU, et al. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum, 2006, 55(1):19-26. doi: 10.1002/art.21705.
doi: 10.1002/art.21705 URL |
[60] |
Balow JE, Rosenthal AS. Glucocorticoid suppression of macrophage migration inhibitory factor. J Exp Med, 1973, 137(4):1031-1041. doi: 10.1084/jem.137.4.1031.
doi: 10.1084/jem.137.4.1031 pmid: 4693151 |
[61] |
Rinehart JJ, Sagone AL, Balcerzak SP, et al. Effects of corticosteroid therapy on human monocyte function. N Engl J Med, 1975, 292(5):236-241. doi: 10.1056/NEJM19750130 2920504.
doi: 10.1056/NEJM19750130 2920504 URL |
[62] |
Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med, 1976, 84(3):304-315. doi: 10.7326/0003-4819-84-3-304.
doi: 10.7326/0003-4819-84-3-304 pmid: 769625 |
[63] |
Ai JW, Zhang S, Ruan QL, et al. The Risk of Tuberculosis in Patients with Rheumatoid Arthritis Treated with Tumor Necrosis Factor-α Antagonist: A Metaanalysis of Both Randomized Controlled Trials and Registry/Cohort Studies. J Rheumatol, 2015, 42(12):2229-2237. doi: 10.3899/jrheum.150057.
doi: 10.3899/jrheum.150057 URL |
[64] |
Breedveld FC, Dayer JM. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis, 2000, 59(11):841-849. doi: 10.1136/ard.59.11.841.
doi: 10.1136/ard.59.11.841 pmid: 11053058 |
[65] |
Miceli-Richard C, Dougados M. Leflunomide for the treatment of rheumatoid arthritis. Expert Opin Pharmacother, 2003, 4(6):987-997. doi: 10.1517/14656566.4.6.987.
doi: 10.1517/14656566.4.6.987 URL |
[66] | Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis, 2007, 65(3):168-173. |
[67] |
Hong W, Wang Y, Chang Z, et al. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Sci Rep, 2015, 5:15328. doi: 10.1038/srep15328.
doi: 10.1038/srep15328 pmid: 26471125 |
[68] |
Leitner J, Drobits K, Pickl WF, et al. The effects of Cyclosporine A and azathioprine on human T cells activated by different costimulatory signals. Immunol Lett, 2011, 140(1/2):74-80. doi: 10.1016/j.imlet.2011.06.010.
doi: 10.1016/j.imlet.2011.06.010 URL |
[69] |
Berekmeri A, Mahmood F, Wittmann M, et al. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol, 2018, 14(9):719-730. doi: 10.1080/1744666X.2018.1512404.
doi: 10.1080/1744666X.2018.1512404 URL |
[70] |
Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis, 2017, 76(7):1253-1262. doi: 10.1136/annrheumdis-2016-210457.
doi: 10.1136/annrheumdis-2016-210457 URL |
[71] | 美国辉瑞制药有限公司. 枸橼酸托法替布片说明书[EB/OL]. [2022-06-23]. https://labeling.pfizer.com/ShowLabeling.aspx?id=14493. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[7] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[8] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[9] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[10] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[11] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[12] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[13] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[14] | Zhang Lifan, Chen Yan, Zhang Yueqiu, Zhang Fengchun, Zeng Xiaofeng, Zhao Yan, Liu Shengyun, Zuo Xiaoxia, Zhang Zhiyi, Wu Huaxiang, Chen Sheng, Li Hongbin, Zhu Ping, Wu Lijun, Qi Wencheng, Liu Yi, Zhang Miaojia, Liu Huaxiang, Zhou Baotong, Shi Xiaochun, Ruan Guiren, Liu Xiaoqing, The Epidemiological Study and Therapeutic Evaluation of Rheumatic Patients with Tuberculosis Study Team. Prevalence of active tuberculosis in Chinese patients with rheumatic diseases: A multicenter cross-sectional subgroup analysis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 22-28. |
[15] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||