Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (11): 1126-1134.doi: 10.19982/j.issn.1000-6621.20220224
• Original Articles • Previous Articles Next Articles
Wu Kunyang1, Lu Yewei2, Zhang Mingwu1, Zhu Yelei1, Li Xiangchen2, Pan Junhang1, Wang Xiaomeng1, Wang Wei3, Jiang Minmin4, Peng Xiaojun2, Wang Weixin2, Gao Junshun2, Liu Zhengwei1()
Received:
2022-06-08
Online:
2022-11-10
Published:
2022-11-03
Contact:
Liu Zhengwei
E-mail:zhwliu@cdc.zj.cn
Supported by:
CLC Number:
Wu Kunyang, Lu Yewei, Zhang Mingwu, Zhu Yelei, Li Xiangchen, Pan Junhang, Wang Xiaomeng, Wang Wei, Jiang Minmin, Peng Xiaojun, Wang Weixin, Gao Junshun, Liu Zhengwei. Analysis on characteristic of drug resistance-associated gene mutations and the correlation with genotypes among Mycobacterium tuberculosis isolates in Zhejiang Province[J]. Chinese Journal of Antituberculosis, 2022, 44(11): 1126-1134. doi: 10.19982/j.issn.1000-6621.20220224
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220224
药品 | 耐药菌株株数 | 耐药率(%) | 耐药基因 | 突变菌株数 | 突变率(%) |
---|---|---|---|---|---|
异烟肼 | 75 | 9.3 | katG | 54 | 72.0 |
inhA | 14 | 18.7 | |||
inhA+katG | 2 | 2.7 | |||
ahpC+katG | 2 | 2.7 | |||
ahpC | 2 | 2.7 | |||
ahpC+inhA+katG | 1 | 1.3 | |||
利福平 | 28 | 3.5 | rpoB | 26 | 92.9 |
rpoB+rpoC | 2 | 7.1 | |||
乙胺丁醇 | 16 | 2.0 | embB | 14 | 87.5 |
embA+embB | 1 | 6.3 | |||
embA | 1 | 6.3 | |||
吡嗪酰胺 | 12 | 1.5 | pncA | 12 | 100.0 |
链霉素 | 55 | 6.8 | rpsL | 40 | 72.7 |
rrs | 12 | 21.8 | |||
gid | 2 | 3.6 | |||
gid+rrs | 1 | 1.8 | |||
氟喹诺酮类 | 41 | 5.1 | gyrA | 36 | 87.8 |
gyrB | 4 | 9.8 | |||
gyrA+gyrB | 1 | 2.4 | |||
阿米卡星 | 3 | 0.4 | rrs | 3 | 100.0 |
卡那霉素 | 4 | 0.5 | rrs | 3 | 75.0 |
eis | 1 | 25.0 | |||
卷曲霉素 | 3 | 0.4 | rrs | 3 | 100.0 |
药品 | 耐药菌株株数 | 耐药率(%) | 耐药基因 | 突变菌株数 | 突变率(%) |
乙硫异烟胺 | 20 | 2.5 | inhA | 16 | 80.0 |
ethA | 3 | 15.0 | |||
ethA+inhA | 1 | 5.0 | |||
对氨基水杨酸 | 8 | 1.0 | thyA | 7 | 87.5 |
folC | 1 | 12.5 |
药品 | 耐药菌 株数 | 耐药率 (%) | 突变类型 | 突变菌 株数 | 突变率 (%) | 平均测序 深度 | 平均突变频率 (%) |
---|---|---|---|---|---|---|---|
异烟肼 | 75 | 9.3 | katG-315-S/T | 45 | 60.0 | 457 | 99.3 |
inhA-15-C/T | 13 | 17.3 | 423 | 94.5 | |||
ahpC启动子-48-G/A | 4 | 5.3 | 572 | 96.8 | |||
其他 | 20 | 26.6 | 375 | 95.5 | |||
利福平 | 28 | 3.5 | rpoB-450-S/L | 16 | 57.1 | 385 | 97.7 |
rpoB-452-L/P | 4 | 14.3 | 393 | 82.5 | |||
rpoB-430-L/P | 4 | 14.3 | 329 | 100.0 | |||
其他 | 9 | 32.1 | 470 | 99.9 | |||
乙胺丁醇 | 16 | 2.0 | embB-306-M/V | 7 | 43.8 | 396 | 95.5 |
embB-306-M/I | 2 | 12.5 | 381 | 100.0 | |||
embB-354-D/A | 2 | 12.5 | 491 | 99.9 | |||
其他 | 6 | 37.5 | 483 | 90.6 | |||
吡嗪酰胺 | 12 | 1.5 | - | - | - | 526 | 99.6 |
链霉素 | 55 | 6.8 | rpsL-43-K/R | 36 | 65.5 | 569 | 99.8 |
rrs-514-A/C | 6 | 10.9 | 418 | 97.1 | |||
rpsL-88-K/R | 3 | 5.5 | 473 | 100.0 | |||
其他 | 8 | 14.6 | 329 | 64.0 | |||
氟喹诺酮类 | 41 | 5.1 | gyrA-94-D/G | 15 | 36.6 | 473 | 92.9 |
gyrA-90-A/V | 12 | 29.3 | 491 | 94.5 | |||
gyrA-94-D/N | 7 | 17.1 | 572 | 98.7 | |||
其他 | 10 | 24.4 | 495 | 65.4 | |||
阿米卡星 | 3 | 0.4 | rrs-1402-C/A | 3 | 3/3 | 249 | 21.7 |
rrs-1484-G/T | 2 | 2/3 | 290 | 19.3 | |||
卡那霉素 | 4 | 0.5 | rrs-1402-C/A | 3 | 3/4 | 249 | 21.7 |
rrs-1484-G/T | 2 | 2/4 | 290 | 19.3 | |||
eis启动子-10-G/A | 1 | 1/4 | 547 | 100.0 | |||
卷曲霉素 | 3 | 0.4 | rrs-1402-C/A | 3 | 3/3 | 249 | 21.7 |
rrs-1484-G/T | 2 | 2/3 | 290 | 19.3 | |||
乙硫异烟胺 | 20 | 2.5 | inhA-15-C/T | 13 | 65.0 | 423 | 94.5 |
其他 | 8 | 40.0 | 469 | 96.6 | |||
对氨基水杨酸 | 8 | 1.0 | thyA-75-H/N | 7 | 7/8 | 736 | 99.8 |
folC-150-S/G | 1 | 1/8 | 613 | 97.4 |
突变位点 | 表型药敏试验结果 | 不一致株数 | 比例(%) | 突变菌株数 | 不一致率(%) |
---|---|---|---|---|---|
katG-315-S/T | 敏感 | 5 | 23.8 | 43 | 11.6 |
ahpC启动子-48-G/A | 敏感 | 3 | 14.3 | 4 | 3/4 |
inhA-15-C/T | 敏感 | 2 | 9.5 | 12 | 16.7 |
katG-110-A/V | 敏感 | 1 | 4.8 | 2 | - |
katG-127-Q/P | 敏感 | 1 | 4.8 | 1 | - |
katG-258-N/S | 敏感 | 1 | 4.8 | 1 | - |
katG-335-I/V | 敏感 | 1 | 4.8 | 1 | - |
katG-337-Y/C | 敏感 | 1 | 4.8 | 1 | - |
katG-607-E/K | 敏感 | 1 | 4.8 | 1 | - |
野生型 | 耐药 | 7 | 33.3 | - | - |
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] |
陈松华, 吴蓓蓓, 柳正卫, 等. 浙江省结核病耐药状况分析. 预防医学, 2016, 28(8): 757-761,765. doi: 10.19485/j.cnki.issn1007-0931.2016.08.001.
doi: 10.19485/j.cnki.issn1007-0931.2016.08.001 |
[3] |
Kizny Gordon A, Marais B, Walker TM, et al. Clinical and public health utility of Mycobacterium tuberculosis whole genome sequencing. Int J Infect Dis, 2021, 113 Suppl 1: S40-S42. doi: 10.1016/j.ijid.2021.02.114.
doi: 10.1016/j.ijid.2021.02.114 pmid: 33716192 |
[4] |
张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用. 中国防痨杂志, 2020, 42(7): 737-740. doi: 10.3969/j.issn.1000-6621.2020.07.017.
doi: 10.3969/j.issn.1000-6621.2020.07.017 |
[5] |
Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019, 17(9): 533-545. doi: 10.1038/s41579-019-0214-5.
doi: 10.1038/s41579-019-0214-5 pmid: 31209399 |
[6] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019, 11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8 URL |
[7] | 中国防痨协会. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015:59-65. |
[8] |
Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17):i884-i890. doi: 10.1093/bioinformatics/bty560.
doi: 10.1093/bioinformatics/bty560 URL |
[9] |
Phelan JE, O’Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med, 2019, 11(1):41. doi: 10.1186/s13073-019-0650-x.
doi: 10.1186/s13073-019-0650-x pmid: 31234910 |
[10] | World Health Organization. GLASS whole-genome sequencing for surveillance of antimicrobial resistance. Geneva: World Health Organization, 2020. |
[11] |
Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015, 15(10):1193-1202. doi: 10.1016/S1473-3099(15)00062-6.
doi: 10.1016/S1473-3099(15)00062-6 URL |
[12] |
Chen X, He G, Wang S, et al. Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China. Front Microbiol, 2019, 10:1741. doi: 10.3389/fmicb.2019.01741.
doi: 10.3389/fmicb.2019.01741 URL |
[13] | World Health Organization. Target product profile for next-generation drug-susceptibility testing at peripheral centres. Geneva: World Health Organization, 2021. |
[14] |
Hillemann D, Rüsch-Gerdes S, Boehme C, et al. Rapid molecular detection of extrapulmonary tuberculosis by the automated GeneXpert MTB/RIF system. J Clin Microbiol, 2011, 49(4):1202-1205. doi: 10.1128/JCM.02268-10.
doi: 10.1128/JCM.02268-10 pmid: 21270230 |
[15] |
Meaza A, Kebede A, Yaregal Z, et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis, 2017, 17(1):280. doi: 10.1186/s12879-017-2389-6.
doi: 10.1186/s12879-017-2389-6 pmid: 28415989 |
[16] |
Jian J, Yang X, Yang J, et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist, 2018, 11:1627-1634. doi: 10.2147/IDR.S176609.
doi: 10.2147/IDR.S176609 URL |
[17] |
罗丹, 覃慧芳, 叶婧, 等. 广西壮族自治区结核分枝杆菌耐药基因突变特征及其与基因型的相关性分析. 中国防痨杂志, 2021, 43(6): 596-601. doi: 10.3969/j.issn.1000-6621.2021.06.013.
doi: 10.3969/j.issn.1000-6621.2021.06.013 |
[18] |
洪创跃, 杨婷婷, 李金莉, 等. 深圳市耐多药结核分枝杆菌耐药基因突变特征分析. 中国防痨杂志, 2020, 42(6): 583-589. doi: 10.3969/j.issn.1000-6621.2020.06.009.
doi: 10.3969/j.issn.1000-6621.2020.06.009 |
[19] |
高敏, 杨婷婷, 李桂莲, 等. 基于全基因组测序的我国耐多药结核分枝杆菌耐药突变特征分析. 中华流行病学杂志, 2020, 41(5): 770-775. doi: 10.3760/cma.j.cn112338-20191111-00800.
doi: 10.3760/cma.j.cn112338-20191111-00800 |
[20] |
田丽, 周伟, 黄星, 等. 中国异烟肼耐药结核分枝杆菌基因突变特征分析. 中国防痨杂志, 2022, 44(4): 354-361. doi: 10.19982/j.issn.1000-6621.20210573.
doi: 10.19982/j.issn.1000-6621.20210573 |
[21] |
Lempens P, Meehan CJ, Vandelannoote K, et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep, 2018, 8(1):3246. doi: 10.1038/s41598-018-21378-x.
doi: 10.1038/s41598-018-21378-x URL |
[22] |
Zhang D, Liu B, Wang Y, et al. Rapid molecular screening for multidrug-resistant tuberculosis in a resource-limited region of China. Trop Med Int Health, 2014, 19(10):1259-1266. doi: 10.1111/tmi.12359.
doi: 10.1111/tmi.12359 pmid: 25040060 |
[23] |
Ye M, Yuan W, Molaeipour L, et al. Antibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob, 2021, 20(1):73. doi: 10.1186/s12941-021-00478-z.
doi: 10.1186/s12941-021-00478-z URL |
[24] |
Javed H, Bakuła Z, Pleń M, et al. Evaluation of Genotype MTBDRplus and MTBDRsl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol, 2018, 9:2265. doi: 10.3389/fmicb.2018.02265.
doi: 10.3389/fmicb.2018.02265 URL |
[25] |
Dantas NGT, Suffys PN, Carvalho WDS, et al. Correlation between the BACTEC MGIT 960 culture system with Genotype MTBDRplus and TB-SPRINT in multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Mem Inst Oswaldo Cruz, 2017, 112(11):769-774. doi: 10.1590/0074-02760170062.
doi: 10.1590/0074-02760170062 URL |
[26] |
Li D, Hu Y, Werngren J, et al. Multicenter Study of the Emergence and Genetic Characteristics of Pyrazinamide-Resis-tant Tuberculosis in China. Antimicrob Agents Chemother, 2016, 60(9):5159-5166. doi: 10.1128/AAC.02687-15.
doi: 10.1128/AAC.02687-15 URL |
[27] |
Huang H, Ding N, Yang T, et al. Cross-sectional Whole-genome Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis, 2019, 69(3):405-413. doi: 10.1093/cid/ciy883.
doi: 10.1093/cid/ciy883 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||