Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (8): 880-884.doi: 10.3969/j.issn.1000-6621.2020.08.019
• Review Articles • Previous Articles
SUN Qing, HUANG Hai-rong, WANG Gui-rong()
Received:
2020-04-22
Online:
2020-08-10
Published:
2020-08-10
Contact:
WANG Gui-rong
E-mail:wangguirong1230@ccmu.edu.cn
SUN Qing, HUANG Hai-rong, WANG Gui-rong. In vitro activities and drug resistance mechanisms of bedaquiline, clofazimine and delamanid against common pathogenic non-tuberculous mycobacteria[J]. Chinese Journal of Antituberculosis, 2020, 42(8): 880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.08.019
[1] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014,18(11):1370-1377. doi: 10.5588/ijtld.14.0120.
doi: 10.5588/ijtld.14.0120 URL pmid: 25299873 |
[2] |
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis, 2016,45:123-134. doi: 10.1016/j.ijid.2016.03.006.
URL pmid: 26976549 |
[3] |
Singh P, Kumari R, Lal R. Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian J Microbiol, 2017,57(4):371-377. doi: 10.1007/s12088-017-0674-0.
URL pmid: 29151636 |
[4] |
Patel RV, Riyaz SD, Park SW. Bedaquiline: a new hope to treat multi-drug resistant tuberculosis. Curr Top Med Chem, 2014,14(16):1866-1874. doi: 10.2174/156802661466614092 9114822.
doi: 10.2174/1568026614666140929114822 URL pmid: 25262806 |
[5] |
Yu X, Gao X, Li C, et al. In Vitro Activities of Bedaquiline and Delamanid against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2019,63(8):e00031-19. doi: 10.1128/AAC.00031-19.
doi: 10.1128/AAC.00031-19 URL pmid: 31138571 |
[6] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17. doi: 10.1128/AAC.00900-17.
URL pmid: 28739779 |
[7] |
Kim DH, Jhun BW, Moon SM, et al. In Vitro Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates. Antimicrob Agents Chemother, 2019,63(8):e00665-19. doi: 10.1128/AAC.00665-19.
doi: 10.1128/AAC.00665-19 URL pmid: 31182533 |
[8] |
DeStefano MS, Shoen CM, Cynamon MH. Therapy for Mycobacterium kansasii Infection: Beyond 2018. Front Microbiol, 2018,9:2271. doi: 10.3389/fmicb.2018.02271.
doi: 10.3389/fmicb.2018.02271 URL pmid: 30319580 |
[9] |
Brown-Elliott BA, Philley JV, Griffith DE, et al. In Vitro Susceptibility Testing of Bedaquiline against Mycobacterium avium Complex. Antimicrob Agents Chemother, 2017,61(2):e01798-16. doi: 10.1128/AAC.01798-16.
doi: 10.1128/AAC.01798-16 URL pmid: 27872065 |
[10] |
Li B, Ye M, Guo Q, et al. Determination of MIC Distribution and Mechanisms of Decreased Susceptibility to Bedaquiline among Clinical Isolates of Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00175-18. doi: 10.1128/AAC.00175-18.
doi: 10.1128/AAC.00175-18 URL pmid: 29712658 |
[11] |
Dupont C, Viljoen A, Thomas S, et al. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and is Effective in Infected Zebrafish. Antimicrob Agents Chemother, 2017,61(11):e01225-17. doi: 10.1128/AAC.01225-17.
doi: 10.1128/AAC.01225-17 URL pmid: 28807917 |
[12] |
Huh HJ, Kim SY, Jhun BW, et al. Recent advances in mole-cular diagnostics and understanding mechanisms of drug resis-tance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019,72:169-182. doi: 10.1016/j.meegid.2018.10.003.
doi: 10.1016/j.meegid.2018.10.003 URL pmid: 30315892 |
[13] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005,307(5707):223-227. doi: 10.1126/science.1106753.
doi: 10.1126/science.1106753 URL pmid: 15591164 |
[14] |
Aguilar-Ayala DA, Cnockaert M, André E, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol, 2017,66(8):1140-1143. doi: 10.1099/jmm.0.000537.
doi: 10.1099/jmm.0.000537 URL pmid: 28749330 |
[15] |
Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem, 2014,289(23):16526-16540. doi: 10.1074/jbc.M113.538959.
doi: 10.1074/jbc.M113.538959 URL pmid: 24737322 |
[16] |
Alexander DC, Vasireddy R, Vasireddy S, et al. Emergence of mmpT5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol, 2017,55(2):574-584. doi: 10.1128/JCM.02087-16.
doi: 10.1128/JCM.02087-16 URL pmid: 27927925 |
[17] |
Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,63(1):e01316-18. doi: 10.1128/AAC.01316-18.
doi: 10.1128/AAC.01316-18 URL pmid: 30323043 |
[18] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018,105:1353-1359. doi: 10.1016/j.biopha.2018.06.023.
doi: 10.1016/j.biopha.2018.06.023 URL pmid: 30021373 |
[19] |
Luo J, Yu X, Jiang G, et al. In Vitro Activity of Clofazimine against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2018,62(7):e00072-18. doi: 10.1128/AAC.00072-18.
doi: 10.1128/AAC.00072-18 URL pmid: 29760127 |
[20] |
Li G, Pang H, Guo Q, et al. Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria. Int J Antimicrob Agents, 2017,49(3):364-374. doi: 10.1016/j.ijantimicag.2016.10.024.
doi: 10.1016/j.ijantimicag.2016.10.024 URL pmid: 28131606 |
[21] |
van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents, 2010,35(2):169-173. doi: 10.1016/j.ijantimicag.2009.09.023.
doi: 10.1016/j.ijantimicag.2009.09.023 URL pmid: 20006470 |
[22] |
Shen Y, Wang X, Jin J, et al. In Vitro Susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum Isolates to 30 Antibiotics. Biomed Res Int, 2018,2018:4902941. doi: 10.1155/2018/4902941.
doi: 10.1155/2018/4902941 URL pmid: 30687747 |
[23] |
Huang CC, Wu MF, Chen HC, et al. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect, 2018,51(5):636-643. doi: 10.1016/j.jmii.2017.05.001.
doi: 10.1016/j.jmii.2017.05.001 URL pmid: 28705770 |
[24] |
Shen GH, Wu BD, Hu ST, et al. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents, 2010,35(4):400-404. doi: 10.1016/j.ijantimicag.2009.12.008.
doi: 10.1016/j.ijantimicag.2009.12.008 URL pmid: 20138481 |
[25] |
Ismail N, Peters RPH, Ismail NA, et al. Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. Antimicrob Agents Chemother, 2019,63(3):e02141-18. doi: 10.1128/AAC.02141-18.
doi: 10.1128/AAC.02141-18 URL pmid: 30642938 |
[26] |
Chen Y, Chen J, Zhang S, et al. Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00544-18. doi: 10.1128/AAC.00544-18.
doi: 10.1128/AAC.00544-18 URL pmid: 29712660 |
[27] |
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015,75(1):91-100. doi: 10.1007/s40265-014-0331-4.
doi: 10.1007/s40265-014-0331-4 URL pmid: 25404020 |
[28] |
Bashiri G, Rehan AM, Greenwood DR, et al. Metabolic engi-neering of cofactor F420 production in Mycobacterium smegmatis. PLoS One, 2010,5(12):e15803. doi: 10.1371/journal.pone.0015803.
doi: 10.1371/journal.pone.0015803 URL pmid: 21209917 |
[29] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006. |
[30] | Brown-Elliott BA, Rubio A, Wallace RJ Jr. In Vitro Susceptibility Testing of a Novel Benzimidazole, SPR719, against Nontuberculous Mycobacteria. Antimicrob Agents Chemo-ther, 2018,62(11):e01503-18. doi: 10.1128/AAC.01503-18. |
[31] |
Cho EH, Huh HJ, Song DJ, et al. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J Infect Chemother, 2018,24(4):315-318. doi: 10.1016/j.jiac.2017.10.022.
doi: 10.1016/j.jiac.2017.10.022 URL pmid: 29223615 |
[32] |
Litvinov V, Makarova M, Galkina K, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS One, 2018,13(9):e0203108. doi: 10.1371/journal.pone.0203108.
doi: 10.1371/journal.pone.0203108 URL pmid: 30222736 |
[33] |
Heidarieh P, Mirsaeidi M, Hashemzadeh M, et al. In Vitro Antimicrobial Susceptibility of Nontuberculous Mycobacteria in Iran. Microb Drug Resist, 2016,22(2):172-178. doi: 10.1089/mdr.2015.0134.
doi: 10.1089/mdr.2015.0134 URL pmid: 26468990 |
[34] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007,175(4):367-416. doi: 10.1164/rccm.200604-571ST.
doi: 10.1164/rccm.200604-571ST URL pmid: 17277290 |
[35] |
van Ingen J, Kuijper EJ. Drug susceptibility testing of nontuberculous mycobacteria. Future Microbiol, 2014,9(9):1095-1110. doi: 10.2217/fmb.14.60.
doi: 10.2217/fmb.14.60 URL pmid: 25340838 |
[36] |
Jarand J, Davis JP, Cowie RL, et al. Long-term Follow-up of Mycobacterium avium Complex Lung Disease in Patients Treated With Regimens Including Clofazimine and/or Rifampin. Chest, 2016,149(5):1285-1293. doi: 10.1378/chest.15-0543.
doi: 10.1378/chest.15-0543 URL pmid: 26513209 |
[37] |
Nie W, Duan H, Huang H, et al. Species Identification and Clarithromycin Susceptibility Testing of 278 Clinical Nontuberculosis Mycobacteria Isolates. Biomed Res Int, 2015,2015:506598. doi: 10.1155/2015/506598.
doi: 10.1155/2015/506598 URL pmid: 26146620 |
[38] |
Ananta P, Kham-Ngam I, Chetchotisakd P, et al. Analysis of drug-susceptibility patterns and gene sequences associated with clarithromycin and amikacin resistance in serial Mycobacterium abscessus isolates from clinical specimens from Northeast Thailand. PLoS One, 2018,13(11):e0208053. doi: 10.1371/journal.pone.0208053
doi: 10.1371/journal.pone.0208053 URL pmid: 30496270 |
[39] |
Lavollay M, Dubée V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect, 2014,20(5):O297-O300. doi: 10.1111/1469-0691.12405.
doi: 10.1111/1469-0691.12405 URL pmid: 24112243 |
[40] |
Cho EH, Huh HJ, Song DJ, et al. Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens. Diagn Microbiol Infect Dis, 2019,93(2):107-111. doi: 10.1016/j.diagmicrobio.2018.08.008.
doi: 10.1016/j.diagmicrobio.2018.08.008 URL pmid: 30236529 |
[41] |
Zhang Z, Lu J, Song Y, et al. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis, 2018,90(1):31-34. doi: 10.1016/j.diagmicrobio.2017.09.013.
doi: 10.1016/j.diagmicrobio.2017.09.013 URL pmid: 29089153 |
[42] |
Hatakeyama S, Ohama Y, Okazaki M, et al. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis, 2017,17(1):197. doi: 10.1186/s12879-017-2298-8.
doi: 10.1186/s12879-017-2298-8 URL pmid: 28270102 |
[43] |
Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrob Agents Chemother, 2015,60(2):1097-1105. doi: 10.1128/AAC.02615-15.
doi: 10.1128/AAC.02615-15 URL pmid: 26643335 |
[44] |
Yang B, Jhun BW, Moon SM, et al. Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother, 2017,61(6):e02052-16. doi: 10.1128/AAC.02052-16.
doi: 10.1128/AAC.02052-16 URL pmid: 28348153 |
[1] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[2] | Li Qi, Wang Yujin, Wang Xueyu, Chu Naihui, Nie Wenjuan. Study on the metabolic interaction mechanism between the novel compound WX-081 and clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 142-149. |
[3] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[4] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[5] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[6] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[7] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[8] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[9] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[10] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[11] | Xue Lian, Ju Meng, Huang Yi, Zhao Guolian, Zhang Yuhao, Wang Sihan, Lei Ying, Dang Liyun, Zuo Lei. A preliminary study of the in vitro bactericidal effect of low-temperature plasma technology on the Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 557-561. |
[12] | Cheng Mengli, Jiang Guanglu, Huo Fengmin, Xue Yi, Yu Xia. Evaluation of in vitro activity of fusidic acid against mycobacteria [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 461-466. |
[13] | Pei Shaojun, Ou Xichao. Interpretation of the World Health Organization’s Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 260-266. |
[14] | Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. |
[15] | Ma Shiran, Chen Suting, Huang Hairong, Duan Hongfei. In vitro inhibitory and intracellular bactericidal activity of omadacycline against Mycobacterium abscessus [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1442-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||