Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (6): 732-737.doi: 10.19982/j.issn.1000-6621.20240582
• Original Articles • Previous Articles Next Articles
Gu Yuzhen, Chen Siyi, Huang Hairong, Yu Xia()
Received:
2024-12-22
Online:
2025-06-10
Published:
2025-06-11
Contact:
Yu Xia, Email: Supported by:
CLC Number:
Gu Yuzhen, Chen Siyi, Huang Hairong, Yu Xia. Evaluation of in vitro activity of lefamulin against mycobacteria[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 732-737. doi: 10.19982/j.issn.1000-6621.20240582
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240582
菌株编号 | 拉丁文名称 | 中文名称 | MIC (μg/ml) | 菌株编号 | 拉丁文名称 | 中文名称 | MIC (μg/ml) |
---|---|---|---|---|---|---|---|
ATCC6841 | Mycobacterium fortuitum | 偶然分枝杆菌 | >64 | ATCC33464 | Mycobacterium austroafricanum | 南非分枝杆菌 | 64 |
ATCC3366 | Mycobacterium aurum | 金色分枝杆菌 | 32 | ATCC35154 | Mycobacterium pulveris | 灰尘分枝杆菌 | 8 |
ATCC25795 | Mycobacterium neoaurum | 新金色分枝杆菌 | 32 | ATCC14472 | Mycobacterium chelonae | 龟分枝杆菌 | >64 |
ATCC43909 | Mycobacterium gilvum | 浅黄分枝杆菌 | 0.5 | ATCC19627 | Mycobacterium chitae | 千田分枝杆菌 | 2 |
ATCC19420 | Mycobacterium smegmatis | 耻垢分枝杆菌 | >64 | DSM43271 | Mycobacterium peregrinum | 外来分枝杆菌 | >64 |
ATCC19688 | Mycobacterium arafortuitum | 副偶然分枝杆菌 | 32 | ATCC700731 | Mycobacterium septicum | 脓毒分枝杆菌 | >64 |
ATCC15483 | Mycobacterium vaccae | 母牛分枝杆菌 | 8 | DSM44124 | Mycobacterium mucogenicum | 粘液分枝杆菌 | >64 |
ATCC11758 | Mycobacterium phlei | 草分枝杆菌 | >64 | ATCCBAA-955 | Mycobacterium goodii | 谷德分枝杆菌 | >64 |
ATCC19977 | Mycobacterium abscessus | 脓肿分枝杆菌 | >64 | DSM44829 | Mycobacterium cosmeticum | 美容品分枝杆菌 | >64 |
ATCC27406 | Mycobacterium agri | 田野分枝杆菌 | 2 | ATCC23292 | Mycobacterium triviale | 次要分枝杆菌 | 1 |
ATCC19527 | Mycobacterium thermoresistibile | 抗热分枝杆菌 | 16 | ATCC27726 | Mycobacterium gadium | 加地斯分枝杆菌 | 4 |
ATCC43910 | Mycobacterium duvalii | 杜氏分枝杆菌 | 4 | ATCC27278 | Mycobacterium chubuense | 楚布分枝杆菌 | 16 |
ATCC27024 | Mycobacterium rhodesiae | 罗德岛分枝杆菌 | 8 | ATCC27282 | Mycobacterium tokaiense | 东海分枝杆菌 | 8 |
ATCC33776 | Mycobacterium porcinum | 猪分枝杆菌 | >64 |
菌株编号 | 拉丁文名称 | 中文名称 | MIC (μg/ml) | 菌株编号 | 拉丁文名称 | 中文名称 | MIC (μg/ml) |
---|---|---|---|---|---|---|---|
ATCC27294 | Mycobacterium tuberculosis (H37Rv) | 结核分枝杆菌 | 1 | ATCC25276 | Mycobacterium asiaticum | 亚洲分枝杆菌 | 16 |
ATCC12478 | Mycobacterium kansassi | 堪萨斯分枝杆菌 | 16 | DSM44622 | Mycobacterium chimaera | 嵌合分枝杆菌 | 4 |
ATCC13950 | Mycobacterium intracellulare | 胞内分枝杆菌 | 4 | DSM44243 | mycobacterium celatum | 隐藏分枝杆菌 | 4 |
ATCC19530 | Mycobacterium nonchromogenicum | 非产色分枝杆菌 | >64 | DSM44648 | mycobacterium parascrofulaceum | 副瘰疬分枝杆菌 | 0.25 |
ATCC25291 | Mycobacterium avium | 鸟分枝杆菌 | 0.5 | ATCC33013 | Mycobacterium komossense | 科莫斯分枝杆菌 | 0.5 |
ATCC19981 | Mycobacterium scrofulaceum | 瘰疬分枝杆菌 | 0.25 | ATCC19619 | Mycobacterium terrae | 土地分枝杆菌 | >64 |
ATCC23292 | Mycobacterium triviale | 次要分枝杆菌 | 32 | ATCC25799 | Mycobacterium szulgai | 苏加分枝杆菌 | 32 |
ATCC25177 | Mycobacterium tuberculosis (H37Ra) | 结核分枝杆菌 | 0.25 | ATCC27962 | Mycobacterium shimoidei | 施氏分枝杆菌 | 4 |
ATCC19210 | Mycobacterium bovis | 牛分枝杆菌 | 2 | ATCC14470 | Mycobacterium gordonae | 戈登分枝杆菌 | 1 |
ATCC27726 | Mycobacterium gadium | 加地斯分枝杆菌 | 4 | ATCC35711 | Mycobacterium africanum | 非洲分枝杆菌 | 0.5 |
[1] |
Yu X, Liu P, Liu G, et al. The prevalence of non-tuberculous mycobacterial infections in mainland China: Systematic review and meta-analysis. J Infect, 2016, 73(6):558-567. doi:10.1016/j.jinf.2016.08.020.
pmid: 27717784 |
[2] |
Lin C, Russell C, Soll B, et al. Increasing Prevalence of Nontuberculous Mycobacteria in Respiratory Specimens from US-Affiliated Pacific Island Jurisdictions. Emerg Infect Dis, 2018, 24(3):485-491. doi:10.3201/eid2403.171301.
pmid: 29460734 |
[3] |
Zhou L, Xu D, Liu H, et al. Trends in the Prevalence and Antibiotic Resistance of Non-tuberculous Mycobacteria in Mainland China, 2000—2019: Systematic Review and Meta-Analysis. Front Public Health, 2020, 8:295. doi:10.3389/fpubh.2020.00295.
pmid: 32850570 |
[4] | Van Ingen J, Obradovic M, Hassan M, et al. Nontuberculous mycobacterial lung disease caused by Mycobacterium avium complex-disease burden, unmet needs, and advances in treatment developments. Expert Rev Respir Med, 2021, 15(11):1387-1401. doi:10.1080/17476348.2021.1987891. |
[5] | Busatto C, Vianna JS, Da Silva LVJ, et al. Mycobacterium avium: an overview. Tuberculosis (Edinb), 2019, 114:127-134. doi:10.1016/j.tube.2018.12.004. |
[6] | Kumar K, Daley CL, Griffith DE, et al. Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: therapeutic advances and emerging treatments. Eur Respir Rev, 2022, 31(163):210212. doi:10.1183/16000617.0212-2021. |
[7] | Li Y, Liu C, Ma A, et al. Identification and drug susceptibility testing of the subspecies of Mycobacterium avium complex clinical isolates in mainland China. J Glob Antimicrob Resist, 2022, 31:90-97. doi:10.1016/j.jgar.2022.05.027. |
[8] | Moon SM, Kim SY, Kim DH, et al. Relationship between Resistance to Ethambutol and Rifampin and Clinical Outcomes in Mycobacterium avium Complex Pulmonary Disease. Antimicrob Agents Chemother, 2022, 66(4):e0202721. doi:10.1128/aac.02027-21. |
[9] |
Zhanel GG, Deng C, Zelenitsky S, et al. Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs, 2021, 81(2):233-256. doi:10.1007/s40265-020-01443-4.
pmid: 33247830 |
[10] |
Eraikhuemen N, Julien D, Kelly A, et al. Treatment of Community-Acquired Pneumonia: A Focus on Lefamulin. Infect Dis Ther, 2021, 10(1):149-163. doi:10.1007/s40121-020-00378-3.
pmid: 33528794 |
[11] |
Dillon C, Guarascio AJ, Covvey JR. Lefamulin: a promising new pleuromutilin antibiotic in the pipeline. Expert Rev Anti Infect Ther, 2019, 17(1):5-15. doi:10.1080/14787210.2019.1554431.
pmid: 30513017 |
[12] | Covvey JR, Guarascio AJ. Clinical use of lefamulin: A first-in-class semisynthetic pleuromutilin antibiotic. J Intern Med, 2022, 291(1):51-63. doi:10.1111/joim.13378. |
[13] | Salado-Rasmussen K, Nørgaard C, Pedersen TR, et al. In vitro test of the novel antibiotic lefamulin alone and in combination with doxycycline against Mycoplasma genitalium. Antimicrob Agents Chemother, 2025, 69(1):e0134624. doi:10.1128/aac.01346-24. |
[14] | Chew KL, Octavia S, Yeoh SF, et al. MIC Values of Iclaprim and Lefamulin against Mycobacterium abscessus Complex. Antimicrob Agents Chemother, 2021, 65(10):e0061921. doi:10.1128/aac.00619-21. |
[15] |
Van Os W, Zeitlinger M. Target attainment of intravenous lefamulin for treatment of acute bacterial skin and skin structure infections. J Antimicrob Chemother, 2024, 79(2):443-446. doi:10.1093/jac/dkad401.
pmid: 38174805 |
[16] |
Zeitlinger M, Schwameis R, Burian A, et al. Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J Antimicrob Chemother, 2016, 71(4):1022-1026. doi:10.1093/jac/dkv442.
pmid: 26747098 |
[17] | Wicha WW, Prince WT, Lell C, et al. Pharmacokinetics and tolerability of lefamulin following intravenous and oral dosing. J Antimicrob Chemother, 2019, 74(Suppl 3):iii19-iii26. doi:10.1093/jac/dkz087. |
[18] | File TM, Goldberg L, Das A, et al. Efficacy and Safety of Intravenous-to-oral Lefamulin, a Pleuromutilin Antibiotic, for the Treatment of Community-acquired Bacterial Pneumonia: The Phase Ⅲ Lefamulin Evaluation Against Pneumonia (LEAP 1) Trial. Clin Infect Dis, 2019, 69(11):1856-1867. doi:10.1093/cid/ciz090. |
[19] | Zheng Y, Ye S, Huang S, et al. Lefamulin Overcomes Acquired Drug Resistance via Regulating Mitochondrial Homeostasis by Targeting ILF 3 in Hepatocellular Carcinoma. Adv Sci (Weinh), 2024, 11(30):e2401789. doi:10.1002/advs.202401789. |
[20] |
Mccarthy MW. Clinical Pharmacokinetics and Pharmacodynamics of Lefamulin. Clin Pharmacokinet, 2021, 60(11):1387-1394. doi:10.1007/s40262-021-01056-4.
pmid: 34254252 |
[1] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[2] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[3] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[4] | Li Longfen, Shi Chunjing, Luo Yun, Zhang Huajie, Liu Jun, Wang Ge, Zhao Yanhong, Yuan Lijuan, Li Shan, Li Wenming, Shen Lingjun. Establishing and validating a prediction model for HIV-associated nontuberculous mycobacterial disease based on machine learning [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 708-718. |
[5] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[6] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[7] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[8] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[9] | Ying Guangzhi, Cai Qingshan, Ma Xiaoqing, Chen Lingyan, Chen Yuanyuan. Diagnostic value of Nanopore targeted sequencing for detecting nontuberculous mycobacteria in respiratory specimens [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 589-596. |
[10] | Hu Qianfang, Zhong Rujie, Shang Yuanyuan, Zhang Xuxia, Li Shanshan, Wang Wei. High-throughput screening and identification of compounds with anti-Mycobacterium kansasii activity [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 597-604. |
[11] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[12] | Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. |
[13] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[14] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[15] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||