中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (11): 1097-1102.doi: 10.19982/j.issn.1000-6621.20230266
收稿日期:
2023-08-03
出版日期:
2023-11-10
发布日期:
2023-11-03
通信作者:
周向梅,Email:基金资助:
Nan Yue, Long Meizhen, Dong Yuhui, Wang Yuanzhi, Zhou Xiangmei()
Received:
2023-08-03
Online:
2023-11-10
Published:
2023-11-03
Contact:
Zhou Xiangmei, Email: Supported by:
摘要:
巨噬细胞是参与先天性免疫的重要细胞,也是结核分枝杆菌感染的主要目标。研究发现,免疫细胞代谢重编程与其功能密切相关。在感染的早期阶段,巨噬细胞以M1极化为主,糖代谢方式从线粒体氧化磷酸化转变为有氧糖酵解(Warburg效应),促进炎性因子的分泌;在感染后期,巨噬细胞从有氧糖酵解转变为线粒体氧化磷酸化,从而抑制巨噬细胞促炎和抗菌反应。全面认识结核分枝杆菌感染期间巨噬细胞代谢与功能的关系有助于宿主导向疗法的发展。本文中,笔者对结核分枝杆菌感染期间巨噬细胞糖代谢重编程的相关研究进行了总结,以期为结核病的防治提供新思路。
中图分类号:
南岳, 龙美贞, 董玉慧, 王元智, 周向梅. 巨噬细胞糖代谢重编程在结核分枝杆菌感染中的研究进展[J]. 中国防痨杂志, 2023, 45(11): 1097-1102. doi: 10.19982/j.issn.1000-6621.20230266
Nan Yue, Long Meizhen, Dong Yuhui, Wang Yuanzhi, Zhou Xiangmei. Research progress on macrophage glucose metabolism reprogramming in Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2023, 45(11): 1097-1102. doi: 10.19982/j.issn.1000-6621.20230266
[1] | Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol, 2022, 13: 747799. doi:10.3389/fimmu.2022.747799. |
[2] | Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446): 445-455. doi:10.1038/nature12034. |
[3] | Arish M, Naz F. Macrophage plasticity as a therapeutic target in tuberculosis. Eur J Immunol, 2022, 52(5): 696-704. doi:10.1002/eji.202149624. |
[4] |
Orecchioni M, Ghosheh Y, Pramod AB, et al. Corrigendum: Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2020, 11: 234. doi:10.3389/fimmu.2020.00234.
pmid: 32161587 |
[5] |
Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol, 2021, 21(6): 363-381. doi:10.1038/s41577-020-00478-8.
pmid: 33340021 |
[6] |
Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. Immunol Rev, 2020, 295(1): 5-14. doi:10.1111/imr.12858.
pmid: 32320073 |
[7] |
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 2011, 27: 441-464. doi:10.1146/annurev-cellbio-092910-154237.
pmid: 21985671 |
[8] |
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol, 1927, 8(6): 519-530. doi:10.1085/jgp.8.6.519.
pmid: 19872213 |
[9] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000, 164(12): 6166-6173. doi:10.4049/jimmunol.164.12.6166.
pmid: 10843666 |
[10] |
Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res, 2015, 25(7): 771-784. doi:10.1038/cr.2015.68.
pmid: 26045163 |
[11] |
Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)?. Trends Immunol, 2017, 38(6): 395-406. doi:10.1016/j.it.2017.03.001.
pmid: 28396078 |
[12] |
El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function. Semin Immunol, 2015, 27(4): 267-275. doi:10.1016/j.smim.2015.09.001.
pmid: 26454572 |
[13] |
Palsson-Mcdermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab, 2015, 21(1): 65-80. doi:10.1016/j.cmet.2014.12.005.
pmid: 25565206 |
[14] |
Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun, 2016, 7: 13280. doi:10.1038/ncomms13280.
pmid: 27779186 |
[15] |
Millet P, Vachharajani V, McPhail L, et al. GAPDH Binding to TNF-α mRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism. J Immunol, 2016, 196(6): 2541-2551. doi:10.4049/jimmunol.1501345.
pmid: 26843329 |
[16] |
Bae S, Kim H, Lee N, et al. α-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol, 2012, 189(1): 365-372. doi:10.4049/jimmunol.1102073.
pmid: 22623332 |
[17] |
Meiser J, Krämer L, Sapcariu SC, et al. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. J Biol Chem, 2016, 291(8): 3932-3946. doi:10.1074/jbc.M115.676817.
pmid: 26679997 |
[18] |
Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J, 1990, 265(2): 503-509. doi:10.1042/bj2650503.
pmid: 2302181 |
[19] |
Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab, 2012, 15(6): 813-826. doi:10.1016/j.cmet.2012.04.023.
pmid: 22682222 |
[20] | Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A, 2013, 110(19): 7820-7825. doi:10.1073/pnas.1218599110. |
[21] | Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242. doi:10.1038/nature11986. |
[22] |
Mcfadden BA, Purohit S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol, 1977, 131(1): 136-144. doi:10.1128/jb.131.1.136-144.1977.
pmid: 17593 |
[23] | Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med, 2016, 213(9): 1655-1662. doi:10.1084/jem.20160061. |
[24] | Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol, 2020, 877: 173090. doi:10.1016/j.ejphar.2020.173090. |
[25] |
Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol, 2010, 185(1): 605-614. doi:10.4049/jimmunol.0901698.
pmid: 20498354 |
[26] | Mehrotra P, Jamwal SV, Saquib N, et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog, 2014, 10(7): e1004265. doi:10.1371/journal.ppat.1004265. |
[27] |
Gleeson LE, Sheedy FJ, Palsson-McDermott EM, et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol, 2016, 196(6): 2444-2449. doi:10.4049/jimmunol.1501612.
pmid: 26873991 |
[28] |
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol, 2014, 15(4): 323-332. doi:10.1038/ni.2833.
pmid: 24562310 |
[29] | Moon JS, Hisata S, Park MA, et al. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP 3 Inflammasome Activation. Cell Rep, 2015, 12(1): 102-115. doi:10.1016/j.celrep.2015.05.046. |
[30] | Shi L, Jiang Q, Bushkin Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. mBio, 2019, 10(2): e02550-18. doi:10.1128/mBio.02550-18. |
[31] |
Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol, 2009, 9(9): 609-617. doi:10.1038/nri2607.
pmid: 19704417 |
[32] | Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab, 2003, 284(5): E855-E862. doi:10.1152/ajpendo.00526.2002. |
[33] |
Rider MH, Bertrand L, Vertommen D, et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J, 2004, 381(Pt 3): 561-579. doi:10.1042/BJ20040752.
pmid: 15170386 |
[34] | Kang DD, Lin Y, Moreno JR, et al. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One, 2011, 6(1): e16161. doi:10.1371/journal.pone.0016161. |
[35] |
Koivunen P, Hirsilä M, Remes AM, et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem, 2007, 282(7): 4524-4532. doi:10.1074/jbc.M610415200.
pmid: 17182618 |
[36] |
Cardoso MS, Silva TM, Resende M, et al. Lack of the Transcription Factor Hypoxia-Inducible Factor 1α (HIF-1α) in Macrophages Accelerates the Necrosis of Mycobacterium avium-Induced Granulomas. Infect Immun, 2015, 83(9): 3534-3544. doi:10.1128/IAI.00144-15.
pmid: 26099585 |
[37] | Evans WH, Karnovsky ML. The biochemical basis of phagocytosis. Ⅳ. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry, 1962, 1: 159-166. doi:10.1021/bi00907a024. |
[38] | Rohde KH, Veiga DF, Caldwell S, et al. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog, 2012, 8(6): e1002769. doi:10.1371/journal.ppat.1002769. |
[39] |
Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3): 419-430. doi:10.1016/j.immuni.2015.02.005.
pmid: 25786174 |
[40] |
Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun, 2013, 4: 2834. doi:10.1038/ncomms3834.
pmid: 24280772 |
[41] | Takeda N, O’Dea EL, Doedens A, et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev, 2010, 24(5): 491-501. doi:10.1101/gad.1881410. |
[42] |
Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol, 2016, 46(11): 2574-2586. doi:10.1002/eji.201546259.
pmid: 27624090 |
[43] | Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Front Immunol, 2020, 11: 1790. doi:10.3389/fimmu.2020.01790. |
[44] | Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol, 2020, 10: 576596. doi:10.3389/fcimb.2020.576596. |
[45] |
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol, 2020, 13(2): 190-204. doi:10.1038/s41385-019-0226-5.
pmid: 31772320 |
[46] | Rao M, Ippolito G, Mfinanga S, et al. Improving treatment outcomes for MDR-TB-Novel host-directed therapies and personalised medicine of the future. Int J Infect Dis, 2019, 80S: S62-S67. doi:10.1016/j.ijid.2019.01.039. |
[47] | Jiang Q, Qiu Y, Kurland I J, et al. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. mBio, 2022, 13(4): e0127422. doi:10.1128/mbio.01274-22. |
[48] | Cumming BM, Addicott KW, Adamson JH, et al. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. Elife, 2018, 7: e39169. doi:10.7554/eLife.39169. |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[3] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[4] | 卢海林, 汪文斐, 陶文慧, 林培翀, 陈心春, 邓国防, 谢水祥. 油酸上调围脂滴蛋白2表达增强巨噬细胞对结核分枝杆菌的清除作用[J]. 中国防痨杂志, 2025, 47(1): 72-76. |
[5] | 赵艳梅, 韩悦, 柯云玲, 庄让笑. 巨噬细胞极化在肺部疾病中的作用机制[J]. 中国防痨杂志, 2024, 46(S2): 22-24. |
[6] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[7] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[8] | 唐灵通, 涂祥俊, 钟涛, 张薇, 杨波, 曾超林, 杨程, 王昌银, 陈莉. 代谢组学在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(S2): 522-527. |
[9] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[10] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[11] | 王艺霖, 吴潇, 逄宇, 李姗姗. 奥布替尼在分枝杆菌感染宿主巨噬细胞中的免疫调控作用[J]. 中国防痨杂志, 2024, 46(9): 1063-1068. |
[12] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[13] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[14] | 刘浩瀚, 马子淳, 逄宇, 李姗姗. G蛋白偶联受体在宿主抗结核分枝杆菌感染中的功能及作用机制[J]. 中国防痨杂志, 2024, 46(7): 839-844. |
[15] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||