中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (6): 625-630.doi: 10.3969/j.issn.1000-6621.2021.06.018
收稿日期:
2021-01-26
出版日期:
2021-06-10
发布日期:
2021-06-02
通信作者:
周向梅
E-mail:zhouxm@cau.edu.cn
基金资助:
WANG Yuan-zhi, LIANG Zheng-min, QU Meng-jin, ZHOU Xiang-mei()
Received:
2021-01-26
Online:
2021-06-10
Published:
2021-06-02
Contact:
ZHOU Xiang-mei
E-mail:zhouxm@cau.edu.cn
摘要:
目前全球唯一获得批准且应用最广泛的结核病疫苗是卡介苗,它能有效预防婴幼儿结核性脑膜炎和播散性结核病的发生,但是对青少年和成人的保护作用有限,对已感染结核分枝杆菌人群的保护效果也欠佳。因此,开发新型高效疫苗、提高疫苗免疫强度、增长疫苗保护时间成为结核病防控的主要研究方向。作者就多样化的结核病疫苗类型、接种途径和免疫策略进行梳理,总结关于提高疫苗效力的信息,以期为临床前和临床试验方案的并行改进提供参考。
王元智, 梁正敏, 屈孟锦, 周向梅. 结核病疫苗及接种策略研究进展[J]. 中国防痨杂志, 2021, 43(6): 625-630. doi: 10.3969/j.issn.1000-6621.2021.06.018
WANG Yuan-zhi, LIANG Zheng-min, QU Meng-jin, ZHOU Xiang-mei. Research progress of tuberculosis vaccine and vaccination strategy[J]. Chinese Journal of Antituberculosis, 2021, 43(6): 625-630. doi: 10.3969/j.issn.1000-6621.2021.06.018
表1
进入临床试验阶段的亚单位疫苗
类别 | 抗原 | 佐剂/载体 | 佐剂/载体说明 | 临床阶段 |
---|---|---|---|---|
添加佐剂的亚单位疫苗 | ||||
M72 | Rv1196+Rv0125 | AS01 | 脂质体,TLR4受体激动剂 | Ⅱb |
H56 | ESAT-6+Ag85B+Rv2660c | IC31 | 抗菌肽KLK+寡脱氧核苷酸ODN1a,TLR9受体激动剂 | Ⅱb |
ID93 | Rv2608+Rv3619+Rv3620+Rv1813 | GLA-SE | 溶于水包油角鲨烯乳剂中的吡喃葡萄糖脂,TLR4受体激动剂 | Ⅱa |
GamTBvac | Ag85A+ESAT6-CFP10 | CpG ODN | 寡脱氧核苷酸,TLR9受体激动剂 | Ⅱa |
AEC/BC02 | Ag85B+ESAT6+CFP10 | CpG | 基于CpG和铝盐的新型佐剂BC02 | Ⅰ |
重组病毒载体疫苗 | ||||
TB/Flu-04L | Ag85A+ESAT6 | Flu-04L | 减毒复制缺陷流感病毒(H1N1) | Ⅱa |
AERAS-402 | Ag85A+Ag85B+TB10.4 | rAd35 | 重组复制缺陷人腺病毒载体-35 | Ⅱa |
Ad5Ag85A | Ag85A | Ad5 | 重组复制缺陷人腺病毒载体-5 | Ⅰ |
ChAdOx185A+MVA85A boost | Ag85A | ChAdOx1、MVA | 黑猩猩腺病毒、改良安卡拉牛痘病毒 | Ⅰ |
[1] |
Peck M, Gacic-Dobo M, Diallo MS, et al. Global Routine Vaccination Coverage, 2018. MMWR Morb Mortal Wkly Rep, 2019,68(42):937-942. doi: 10.15585/mmwr.mm6842a1.
doi: 10.15585/mmwr.mm6842a1 URL |
[2] | World Health Organization. Summary of the WHO Position Paper on BCG vaccines: WHO position paper. Geneva:World Health Organization, 2018. |
[3] |
郭倩, 申晨, 申阿东. 干细胞与结核分枝杆菌交互作用的研究进展. 中国防痨杂志, 2021,43(2):186-189. doi: 10.3969/j.issn.1000-6621.2021.02.015.
doi: 10.3969/j.issn.1000-6621.2021.02.015 |
[4] | World Health Organization. The global plan to end TB 2016-2020:the paradigm shift.Geneva:Stop TB Partnership, United Nations Office for Project Services, 2015. |
[5] |
陈柠, 孙琳, 申阿东, 等. 卡介苗接种后发生感染的可能原因研究现况. 中国防痨杂志, 2020,42(8):869-873. doi: 10.3969/j.issn.1000-6621.2020.08.017.
doi: 10.3969/j.issn.1000-6621.2020.08.017 |
[6] |
Nieuwenhuizen NE, Kulkarni PS, Shaligram U, et al. The recombinant Bacille Calmette-Guérin vaccine VPM1002:ready for clinical efficacy testing. Front Immunol, 2017,8:1147. doi: 10.3389/fimmu.2017.01147.
doi: 10.3389/fimmu.2017.01147 pmid: 28974949 |
[7] |
Gonzalo AJ, Marinova D, Martin C, et al. MTBVAC:attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol, 2017,8:1803. doi: 10.3389/fimmu.2017.01803.
doi: 10.3389/fimmu.2017.01803 URL |
[8] |
Yang XY, Chen QF, Li YP, et al. Mycobacterium vaccae as adjuvant therapy to anti-tuberculosis chemotherapy in never treated tuberculosis patients: a meta-analysis. PLoS One, 2011,6(9):e23826. doi: 10.1371/journal.pone.0023826.
doi: 10.1371/journal.pone.0023826 URL |
[9] |
Saqib M, Khatri R, Singh B, et al. Mycobacterium indicus pranii as a booster vaccine enhances BCG induced immunity and confers higher protection in animal models of tuberculosis. Tuberculosis (Edinb), 2016,101:164-173. doi: 10.1016/j.tube.2016.10.002.
doi: S1472-9792(16)30239-6 pmid: 27865389 |
[10] |
Munseri P, Said J, Amour M, et al. DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial. Vaccine, 2020,38(46):7239-7245. doi: 10.1016/j.vaccine.2020.09.055.
doi: 10.1016/j.vaccine.2020.09.055 URL |
[11] |
Vilaplana C, Montané E, Pinto S, et al. Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010,28(4):1106-1116. doi: 10.1016/j.vaccine.2009.09.134.
doi: 10.1016/j.vaccine.2009.09.134 pmid: 19853680 |
[12] |
Loxton AG, Knaul JK, Grode L, et al. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol, 2017,24(2):e00439-16. doi: 10.1128/CVI.00439-16.
doi: 10.1128/CVI.00439-16 |
[13] |
Tameris M, Mearns H, Penn-Nicholson A, et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med, 2019,7(9):757-770. doi: 10.1016/S2213-2600(19)30251-6.
doi: 10.1016/S2213-2600(19)30251-6 URL |
[14] |
方刚, 顾小燕, 尹小芳. 母牛分枝杆菌菌苗辅助抗结核方案治疗肺结核对患者免疫功能及疾病转归的影响. 中国临床研究, 2020,33(4):501-504. doi: 10.13429/j.cnki.cjcr.2020.04.017.
doi: 10.13429/j.cnki.cjcr.2020.04.017 |
[15] |
Nell AS, D’Lom E, Bouic P, et al. Safety,tolerability,and immunogenicity of the novel antituberculous vaccine RUTI:randomized,placebocontrolled phase Ⅱ clinical trial in patients with latent tuberculosis infection. PLoS One, 2014,9:e89612. doi: 10.1371/journal.pone.0089612.
doi: 10.1371/journal.pone.0089612 URL |
[16] |
Tait DR, Hatherill M, Van Der Meeren O, et al. Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019,381(25):2429-2439. doi: 10.1056/NEJMoa1909953.
doi: 10.1056/NEJMoa1909953 URL |
[17] |
Coppola M, van Meijgaarden KE, Franken KL, et al. New genomewide algorithm identifies novel in-vivo expressed Mycobacterium tuberculosis antigens inducing human T-cell responses with classical and unconventional cytokine profiles. Sci Rep, 2016,6:37793. doi: 10.1038/srep37793.
doi: 10.1038/srep37793 URL |
[18] | 李菲. 结核潜伏抗原筛选与治疗性融合蛋白疫苗的制备. 兰州: 兰州大学, 2016. |
[19] | 寇一鸣. 结核分枝杆菌新型疫苗的构建及免疫学评价. 长春: 吉林大学, 2018. |
[20] |
Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020,577(7788):95-102. doi: 10.1038/s41586-019-1817-8.
doi: 10.1038/s41586-019-1817-8 URL |
[21] |
Fourie PB, Germishuizen WA, Wong YL, et al. Spray drying TB vaccines for pulmonary administration. Expert Opin Biol Ther, 2008,8(7):857-863. doi: 10.1517/14712598.8.7.857.
doi: 10.1517/14712598.8.7.857 pmid: 18564902 |
[22] |
Manjaly Thomas ZR, Satti I, Marshall JL, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: a phase I randomised controlled trial. PLoS Med, 2019,16(4):e1002790. doi: 10.1371/journal.pmed.1002790.
doi: 10.1371/journal.pmed.1002790 URL |
[23] |
Manjaly Thomas ZR, McShane H, Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg, 2015,109(3):175-181. doi: 10.1093/trstmh/tru206.
doi: 10.1093/trstmh/tru206 URL |
[24] |
徐菀佚, 乔建斌, 马波, 等. 冻融-冻干法制备的流感疫苗脂质体的细胞免疫研究. 中国药科大学学报, 2015,46(6):730-733. doi: 10.11665/j.issn.1000-5048.20150616.
doi: 10.11665/j.issn.1000-5048.20150616 |
[25] |
赵祥月, 范宇超, 谢青昕, 等. 狂犬病疫苗脂质体冻干粉的免疫原性评价. 中国生物制品学杂志, 2020,33(3):250-253. doi: 10.13200/j.cnki.cjb.003001.
doi: 10.13200/j.cnki.cjb.003001 |
[26] |
Aneesh T, Pall TI, Signe TS, et al. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine, 2018,36(23):331-3339. doi: 10.1016/j.vaccine.2018.04.055.
doi: 10.1016/j.vaccine.2018.04.055 URL |
[27] |
Cosgrove CA, Castello-Branco LR, Hussell T, et al. Boosting of cellular immunity against Mycobacterium tuberculosis and modulation of skin cytokine responses in healthy human volunteers by Mycobacterium bovis BCG substrain Moreau Rio de Janeiro oral vaccine. Infect Immun, 2006,74(4):2449-2452. doi: 10.1128/IAI.74.4.2449-2452.2006.
doi: 10.1128/IAI.74.4.2449-2452.2006 URL |
[28] |
Hoft DF, Xia M, Zhang GL, et al. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4(+) T cell transcriptomal molecular signatures. Mucosal Immunol, 2018,11(2):486-495. doi: 10.1038/mi.2017.67.
doi: 10.1038/mi.2017.67 pmid: 28853442 |
[29] |
Magalhaes I, Sizemore DR, Ahmed RK, et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One, 2008,3(11):e3790. doi: 10.1371/journal.pone.0003790.
doi: 10.1371/journal.pone.0003790 URL |
[30] |
Cai H, Yu DH, Hu XD, et al. A combined DNA vaccine-prime, BCG-boost strategy results in better protection against Mycobacterium bovis challenge. DNA Cell Biol, 2006,25(8):438-447. doi: 10.1089/dna.2006.25.438.
doi: 10.1089/dna.2006.25.438 pmid: 16907641 |
[31] |
Wang QM, Sun SH, Hu ZL, et al. Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting. Vaccine, 2004,22(27/28):3622-3627. doi: 10.1016/j.vaccine.2004.03.029.
doi: 10.1016/j.vaccine.2004.03.029 URL |
[32] |
武亚琦. 成人结核病预防策略的探索性研究. 武汉: 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.005095.
doi: 10.27157/d.cnki.ghzku.2019.005095 |
[33] |
Andersen P, Smedegaard B. CD4(+) T-cell subsets that mediate immunological memory to Mycobacterium tuberculosis infection in mice. Infect Immun, 2000,68(2):621-629. doi: 10.1128/iai.68.2.621-629.2000.
doi: 10.1128/iai.68.2.621-629.2000 pmid: 10639425 |
[34] |
Bai C, He J, Niu H, et al. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. Tuberculosis (Edinb), 2018,110:104-111. doi: 10.1016/j.tube.2018.04.006.
doi: 10.1016/j.tube.2018.04.006 URL |
[35] |
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine, 2014,32(51):6911-6918. doi: 10.1016/j.vaccine.2014.10.041.
doi: 10.1016/j.vaccine.2014.10.041 URL |
[1] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[2] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[3] | 黄咪孙, 武娅宁, 李桂莲, 刘海灿. 结核分枝杆菌富集技术的研究进展[J]. 中国防痨杂志, 2025, 47(3): 369-373. |
[4] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[5] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[6] | 刘瑞花, 萨日娜, 王芙蓉. 肺癌与肺结核在疾病发生与发展中相互影响的研究进展[J]. 中国防痨杂志, 2025, 47(1): 102-111. |
[7] | 孙丹雨辰, 刘宇红. 老年人群中开展结核病主动发现的研究进展[J]. 中国防痨杂志, 2025, 47(1): 96-101. |
[8] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[9] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[10] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[11] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[12] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[13] | 王怡婷, 孟祥莉, 付茵, 曹晓龙, 郑惠文, 贺文从, 宋泽萱, 赵雁林. 宏基因组测序应用于结核病防治的研究进展[J]. 中国防痨杂志, 2024, 46(8): 976-981. |
[14] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[15] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||