中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (11): 1237-1242.doi: 10.3969/j.issn.1000-6621.2020.11.017
收稿日期:
2020-06-15
出版日期:
2020-11-10
发布日期:
2020-11-13
通信作者:
鲁洁
E-mail:lujiebch@163.com
基金资助:
LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie()
Received:
2020-06-15
Online:
2020-11-10
Published:
2020-11-13
Contact:
LU Jie
E-mail:lujiebch@163.com
摘要:
当前,由结核分枝杆菌(MTB)引发的结核病仍是全球传染病最主要的死因,耐药菌株的传播给结核病的治疗造成了极大困难。德拉马尼(delamanid,Dlm)作为抗结核新药对耐多药和广泛耐药结核病(MDR-TB/XDR-TB)均有较好的治疗作用,准确并及时地对Dlm耐药菌株进行检测可以最大限度地保证药品临床应用的有效性,提高MDR-TB/XDR-TB的治愈率。MTB获得性耐药多与耐药相关基因突变有关,作者综述了MTB对Dlm耐药的机制及其耐药相关基因突变,为对Dlm耐药菌株进行早期分子诊断提供参考。
刘原园, 初平, 韩书婧, 杨慧, 鲁洁. 结核分枝杆菌对德拉马尼的耐药机制研究进展[J]. 中国防痨杂志, 2020, 42(11): 1237-1242. doi: 10.3969/j.issn.1000-6621.2020.11.017
LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie. Research progress for delamanid resistance mechanism of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1237-1242. doi: 10.3969/j.issn.1000-6621.2020.11.017
表1
Dlm耐药相关ddn基因突变
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Trp88STOP** | >16 | 3 | 0 | Schena等[ |
>4 | 2 | 0 | Rancoita等[ | ||
Gly81Asp | >1.6 | 2 | 0 | Yang等[ | |
Gly81Ser | >0.4 | 31 | 0 | Yang等[ | |
Gly81Ser | <0.0125 | 0 | 4 | Yang等[ | |
Gly53Asp | 0.25 | 3 | 0 | Polsfuss等[ | |
Leu107Pro | 1 | 1 | 0 | Fujiwara等[ | |
Asn91Thr | >25 | 2 | 0 | Fujiwara等[ | |
Arg72Trp | <0.2 | 0 | 2 | Schena等[ | |
Glu83Asp | <0.2 | 0 | 1 | Schena等[ | |
移码突变 | 434C缺失 | >25 | 1 | 0 | Fujiwara等[ |
215G缺失 | >25 | 1 | 0 | Fujiwara等[ | |
252G—254A缺失 | >25 | 1 | 0 | Fujiwara等[ | |
59—101缺失 | >8 | 1 | 0 | Fujiwara等[ | |
91G缺失 | ≥0.12 | 1 | 0 | Kardan-Yamchi等[ | |
329C插入 | >25 | 1 | 0 | Fujiwara等[ | |
同义突变 | Gly39Gly | <0.0125 | 0 | 5 | Yang等[ |
表2
Dlm耐药相关fgd1基因突变
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Gly104Ser | >1 | 1 | 0 | Ghodousi等[ |
Ala89Pro | >25 | 1 | 0 | Fujiwara等[ | |
Lys296Glu | <0.2 | 0 | 1 | Schena等[ | |
Lys270Met | <0.2 | 0 | 12 | Schena等[ | |
移码突变 | 227C缺失 | >25 | 1 | 0 | Fujiwara等[ |
630G插入 | >25 | 7 | 0 | Fujiwara等[ | |
G49fs* | >0.32 | 1 | 0 | Bloemberg等[ | |
同义突变 | Phe320Phe | >0.2 | 9 | 0 | Fujiwara等[ |
>8 | 1 | 0 | Wen等[ | ||
<0.2 | 0 | 72 | Schena等[ | ||
Tyr155Tyr | <0.2 | 0 | 3 | Schena等[ |
表3
Dlm耐药相关fbiA基因突变
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Lys250STOP** | >16 | 1 | 0 | Schena等[ |
Asp106Gly | >25 | 1 | 0 | Fujiwara等[ | |
Asp49Thr | >0.32 | 3 | 0 | Bloemberg等[ | |
Asp49Tyr | ≥2 | 1 | 0 | Hoffmann等[ | |
Glu249Lys | >16 | 1 | 0 | Wen等[ | |
Arg175His | ≥2 | 1 | 0 | Hoffmann等[ | |
<0.016 | 0 | 9 | Bloemberg等[ | ||
Gln120Arg | <0.2 | 0 | 3 | Schena等[ | |
Thr302Met | <0.2 | 0 | 2 | Schena等[ | |
Ala37Asp | <0.0125 | 0 | 1 | Yang 等[ | |
His295Tyr | <0.0125 | 0 | 1 | Yang等[ | |
Ile220Ser | <0.0125 | 0 | 1 | Yang等[ | |
移码突变 | 272—275CAGG插入 | >25 | 1 | 0 | Fujiwara等[ |
452A缺失 | >25 | 1 | 0 | Fujiwara等[ | |
222C, 223C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
同义突变 | Glu249Glu | <0.2 | 0 | 1 | Schena等[ |
Pro144Pro | <0.2 | 0 | 3 | Schena等[ | |
Leu113Leu | <0.2 | 0 | 5 | Schena等[ | |
Asp63Asp | <0.0125 | 0 | 1 | Yang等[ | |
Pro181Pro | 0.2 | 0 | 1 | Yang等[ | |
Ser194Ser | <0.0125 | 0 | 1 | Yang等[ | |
Ser267Ser | <0.0125 | 0 | 1 | Yang等[ |
表5
Dlm耐药相关fbiC基因突变
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
缺失突变 | 1339G缺失 | >25 | 1 | 0 | Fujiwara等[ |
811G,813C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
699C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
1638T缺失 | >25 | 1 | 0 | Fujiwara等[ | |
非同义突变 | Arg220STOP** | >25 | 1 | 0 | Fujiwara等[ |
Val318Ile | 32 | 2 | 0 | Pang等[ | |
Cys98Tyr | >25 | 1 | 0 | Fujiwara等[ | |
Leu53Pro | >25 | 1 | 0 | Fujiwara等[ | |
Arg536Leu | 0.25 | 2 | 0 | Rancoita等[ | |
Thr273Ala | <0.2 | 0 | 5 | Schena等[ | |
Thr681Ile | <0.2 | 0 | 1 | Schena等[ | |
同义突变 | Leu55Leu | <0.2 | 0 | 2 | Schena等[ |
Leu182Leu | <0.2 | 0 | 2 | Schena等[ | |
Asp67Asp | <0.2 | 0 | 1 | Schena等[ | |
Leu811Leu | <0.2 | 0 | 1 | Schena等[ |
[1] | World Health Organization. Global tuberculosis report 2019. Geneva:World Health Organization, 2019. |
[2] |
Matteelli A, Roggi A, Carvalho AC. Extensively drug-resistant tuberculosis: epidemiology and management. Clin Epidemiol, 2014,6:111-118. doi: 10.2147/CLEP.S35839.
doi: 10.2147/CLEP.S35839 URL pmid: 24729727 |
[3] |
Orenstein EW, Basu S, Shah NS, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis, 2009,9(3):153-161. doi: 10.1016/S1473-3099(09)70041-6.
doi: 10.1016/S1473-3099(09)70041-6 URL pmid: 19246019 |
[4] |
Johnston JC, Shahidi NC, Sadatsafavi M, et al. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One, 2009,4(9):e6914. doi: 10.1371/journal.pone.0006914.
doi: 10.1371/journal.pone.0006914 URL pmid: 19742330 |
[5] |
Jacobson KR, Tierney DB, Jeon CY, et al. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis, 2010,51(1):6-14. doi: 10.1086/653115.
doi: 10.1086/653115 URL pmid: 20504231 |
[6] | World Health Organization. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva:World Health Organization, 2014. |
[7] | Liu Y, Matsumoto M, Ishida H, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb), 2018,111:20-30. doi: 10.1016/j.tube.2018.04.008. |
[8] |
Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promi-sing action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466. doi: 10.1371/journal.pmed.0030466.
doi: 10.1371/journal.pmed.0030466 URL pmid: 17132069 |
[9] |
Yuan Y, Zhu Y, Crane DD, et al. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol, 1998,29(6):1449-1458. doi: 10.1046/j.1365-2958.1998.01026.x.
doi: 10.1046/j.1365-2958.1998.01026.x URL pmid: 9781881 |
[10] | Van den Bossche A, Varet H, Sury A, et al. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis (Edinb), 2019,117:18-23. doi: 10.1016/j.tube.2019.05.002. |
[11] |
Barry PJ, O’Connor TM. Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem, 2007,14(18):2000-2008. doi: 10.2174/092986707781368496.
doi: 10.2174/092986707781368496 URL pmid: 17691942 |
[12] |
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015,75(1):91-100. doi: 10.1007/s40265-014-0331-4.
doi: 10.1007/s40265-014-0331-4 URL pmid: 25404020 |
[13] |
Bloemberg GV, Keller PM, Stucki D, et al. Acquired Resis-tance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N Engl J Med, 2015,373(20):1986-1988. doi: 10.1056/NEJMc1505196.
doi: 10.1056/NEJMc1505196 URL pmid: 26559594 |
[14] |
Hoffmann H, Kohl TA, Hofmann-Thiel S, et al. Delamanid and Bedaquiline Resistance in Mycobacterium tuberculosis Ancestral Beijing Genotype Causing Extensively Drug-Resis-tant Tuberculosis in a Tibetan Refugee. Am J Respir Crit Care Med, 2016,193(3):337-340. doi: 10.1164/rccm.201502-0372LE.
doi: 10.1164/rccm.201502-0372LE URL pmid: 26829425 |
[15] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006. |
[16] | Kardan-Yamchi J, Kazemian H, Battaglia S, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med, 2020,9(2):465. doi: 10.3390/jcm9020465. |
[17] |
Wen S, Jing W, Zhang T, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis, 2019,38(7):1293-1296. doi: 10.1007/s10096-019-03551-w.
URL pmid: 30953211 |
[18] |
Yang JS, Kim KJ, Choi H, et al. Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea. Ann Lab Med, 2018,38(6):563-568. doi: 10.3343/alm.2018.38.6.563.
doi: 10.3343/alm.2018.38.6.563 URL pmid: 30027700 |
[19] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17. doi: 10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17 URL pmid: 28739779 |
[20] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC TM MGITTM 960 system . J Antimicrob Chemother, 2016,71(6):1532-1539. doi: 10.1093/jac/dkw044.
doi: 10.1093/jac/dkw044 URL pmid: 27076101 |
[21] |
Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet, 2018,50(2):307-316. doi: 10.1038/s41588-017-0029-0.
doi: 10.1038/s41588-017-0029-0 URL pmid: 29358649 |
[22] |
Purwantini E, Mukhopadhyay B. Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci U S A, 2009,106(15):6333-6338. doi: 10.1073/pnas.0812883106.
doi: 10.1073/pnas.0812883106 URL pmid: 19325122 |
[23] |
Griffin JE, Gawronski JD, Dejesus MA, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 2011,7(9):e1002251. doi: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251 URL pmid: 21980284 |
[24] |
Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-Drug Microtiter Plate Containing Bedaquiline and Delamanid for Large-Scale Research Susceptibility Testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018,62(9):e00344-18. doi: 10.1128/AAC.00344-18.
doi: 10.1128/AAC.00344-18 URL pmid: 29941636 |
[25] |
Polsfuss S, Hofmann-Thiel S, Merker M, et al. Emergence of Low-level Delamanid and Bedaquiline Resistance During Extremely Drug-resistant Tuberculosis Treatment. Clin Infect Dis, 2019,69(7):1229-1231. doi: 10.1093/cid/ciz074.
doi: 10.1093/cid/ciz074 URL pmid: 30933266 |
[26] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019,63(9):e00915-19. doi: 10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19 URL pmid: 31262765 |
[27] |
Haver HL, Chua A, Ghode P, et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015,59(9):5316-5323. doi: 10.1128/AAC.00308-15.
doi: 10.1128/AAC.00308-15 URL pmid: 26100695 |
[28] |
Mukherjee T, Boshoff H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem, 2011,3(11):1427-1454. doi: 10.4155/fmc.11.90.
doi: 10.4155/fmc.11.90 URL pmid: 21879846 |
[1] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
[2] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[3] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[4] | 李琦, 王宇津, 王雪钰, 初乃惠, 聂文娟. 新型化合物舒达吡啶与克拉霉素药物代谢相互作用机制研究[J]. 中国防痨杂志, 2025, 47(2): 142-149. |
[5] | 李雪莲, 张红燕, 王隽, 王庆枫, 马丽萍, 初乃惠, 聂文娟. 耐药肺结核患者超疗程使用德拉马尼的安全性分析[J]. 中国防痨杂志, 2025, 47(2): 164-168. |
[6] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[7] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[8] | 倪健健. 耐多药肺结核治疗效果评价[J]. 中国防痨杂志, 2024, 46(S2): 13-15. |
[9] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[10] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[11] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[12] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[13] | 耿子妹, 王潮虹, 龙嗣博, 郑迈克, 施亦衡, 孙勇, 赵艳, 王桂荣. 重症肺结核患者病原学阳性率及利福平耐药结果分析[J]. 中国防痨杂志, 2024, 46(9): 1050-1055. |
[14] | 王飞, 华朵, 郭建建, 刘畅, 韩璐, 任易. 2021—2023年武汉地区非结核分枝杆菌肺病患者特征分析[J]. 中国防痨杂志, 2024, 46(9): 1069-1076. |
[15] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||