| [1] |
鲍容, 沈佳瑾, 陈裕, 等. 综合性医院非结核分枝杆菌菌种分布及其耐药性. 中华医院感染学杂志, 2025, 35(2): 202-206. doi:10.11816/cn.ni.2025-248493.
|
| [2] |
储美萍, 钱静娟, 程亮, 等. 非结核分枝杆菌病临床特征及临床分离株的菌种分布及耐药性. 中华医院感染学杂志, 2024, 34(1): 41-44. doi:10.11816/cn.ni.2024-230785.
|
| [3] |
Cristancho-Rojas C, Varley CD, Lara SC, et al. Epidemiology of Mycobacterium abscessus. Clin Microbiol Infect, 2024, 30(6):712-717. doi:10.1016/j.cmi.2023.08.035.
|
| [4] |
Singh K, Kumari R, Tripathi R, et al. Detection of clinically important non tuberculous mycobacteria (NTM) from pulmonary samples through one-step multiplex PCR assay. BMC Microbiol, 2020, 20(1): 267. doi:10.1186/s12866-020-01952-y.
pmid: 32847517
|
| [5] |
张良登, 冯兴中, 姜敏, 等. 基于肺与大肠相表里的肺病患者肠道便菌群特点研究. 中国中医药信息杂志, 2018, 25(4):19-23. doi:10.3969/j.issn.1005-5304.2018.04.005.
|
| [6] |
Enaud R, Hooks KB, Barre A, et al. Intestinal Inflammation in Children with Cystic Fibrosis Is Associated with Crohn’s-Like Microbiota Disturbances. J Clin Med, 2019, 8(5):645. doi:10.3390/jcm8050645.
|
| [7] |
Hu Y, Feng Y, Wu J, et al. The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients. Front Cell Infect Microbiol, 2019, 9:90. doi:10.3389/fcimb.2019.00090.
|
| [8] |
李寒雪, 张瑶, 马燕. “肺-肠轴”理论下肠道菌群与肺动脉高压炎症机制的研究进展. 中国慢性病预防与控制, 2025, 33(5): 385-390. doi:10.16386/j.cjpccd.issn.1004-6194.20240717.0527.
|
| [9] |
毛振南, 杨占东. 肠道菌群在慢性阻塞性肺疾病中的作用. 生理科学进展, 2025, 56(1): 30-38. doi:10.20059/j.cnki.pps.2024.12.1233.
|
| [10] |
何嘉伟, 毛宁锋, 赵毅, 等. 基于“肺与大肠相表里”探讨肠道菌群和下呼吸道感染的因果关联:一项双样本孟德尔随机化研究. 中华中医药杂志, 2024, 39(12): 6678-6683.
|
| [11] |
孔令宜, 王园园, 缪长宏, 等. 肠道微生物与细菌性肺炎易感性的因果关系:双样本双向孟德尔随机化研究及cML-MA的应用. 中国急救医学, 2024, 44(2):148-155. doi:10.3969/j.issn.1002-1949.2024.02.009.
|
| [12] |
Carroll KC, Adams LL. Lower Respiratory Tract Infections. Microbiol Spectr, 2016, 4(4). doi:10.1128/microbiolspec.DMIH2-0029-2016.
|
| [13] |
周望展, 何卫, 张颖. 某医院住院患者下呼吸道感染的病原体分布及流行病学特征. 中华医院感染学杂志, 2025, 35(18): 2741-2745. doi:10.11816/cn.ni.2025-250372.
|
| [14] |
全国第五次结核病流行病学抽样调查技术指导组, 全国第五次结核病流行病学抽样调查办公室. 2010年全国第五次结核病流行病学抽样调查报告. 中国防痨杂志, 2012, 34(8): 485-508.
|
| [15] |
Kim YJ, Lee JY, Lee JJ, et al. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes, 2022, 14(1):2073132. doi:10.1080/19490976.2022.2073132.
|
| [16] |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8):1133-1163. doi:10.1002/sim.3034.
pmid: 17886233
|
| [17] |
Lu J, Lin Y, Jiang J, et al. Investigating the potential causal association between consumption of green tea and risk of lung cancer: a study utilizing Mendelian randomization. Front Nutr, 2024, 11:1265878. doi:10.3389/fnut.2024.1265878.
|
| [18] |
Tang F, Wang S, Zhao H, et al. Mendelian randomization analysis does not reveal a causal influence of mental diseases on osteoporosis. Front Endocrinol (Lausanne), 2023, 14: 1125427. doi:10.3389/fendo.2023.1125427.
|
| [19] |
Balavoine C, Andréjak C, Marchand-Adam S, et al. Relationships between COPD and nontuberculous mycobacteria pulmonary infections. Rev Mal Respir, 2017, 34(10):1091-1097. doi:10.1016/j.rmr.2017.09.004.
pmid: 29150178
|
| [20] |
Honda JR, Alper S, Bai X, et al. Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections. Curr Opin Immunol, 2018, 54:66-73. doi:10.1016/j.coi.2018.06.001.
pmid: 29936307
|
| [21] |
张晓萌, 李敏, 柴英辉, 等. 肠道菌群短链脂肪酸与肺结核相关性研究进展. 中国防痨杂志, 2023, 45(7): 699-706. doi:10.19982/j.issn.1000-6621.20230079.
|
| [22] |
杨艳青, 李灿委, 杨自忠, 等. 肠道菌群代谢物——短链脂肪酸的研究进展. 实用医学杂志, 2022, 38(14): 1834-1837. doi:10.3969/j.issn.1006-5725.2022.14.023.
|
| [23] |
Lin TL, Kuo YL, Lai JH, et al. Gut microbiota dysbiosis-related susceptibility to nontuberculous mycobacterial lung disease. Gut Microbes, 2024, 16(1):2361490. doi:10.1080/19490976.2024.2361490.
|
| [24] |
Tiffany CR, Lee JY, Rogers AWL, et al. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. Microbiome, 2021, 9(1):174. doi:10.1186/s40168-021-01123-9.
pmid: 34412707
|
| [25] |
Di Modica M, Gargari G, Regondi V, et al. Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Res, 2021, 81(8):2195-2206. doi:10.1158/0008-5472.CAN-20-1659.
|
| [26] |
Rowan S, Taylor A. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration. Gut Microbes, 2018, 9(5):452-457. doi:10.1080/19490976.2018.1435247.
pmid: 29431583
|
| [27] |
Vich Vila A, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med, 2018, 10(472): eaap8914. doi:10.1126/scitranslmed. aap8914.
|
| [28] |
Ma J, Zhu Z, Yishajiang Y, et al. Role of gut microbiota and inflammatory factors in acute respiratory distress syndrome: a Mendelian randomization analysis. Front Microbiol, 2023, 14:1294692. doi:10.3389/fmicb.2023.1294692.
|
| [29] |
Cheng ZX, Hua JL, Jie ZJ, et al. Genetic Insights into the Gut-Lung Axis: Mendelian Randomization Analysis on Gut Microbiota, Lung Function, and COPD. Int J Chron Obstruct Pulmon Dis, 2024, 19:643-653. doi:10.2147/COPD.S441242.
|
| [30] |
热西丁·阿不都艾尼. 毛螺菌科的定向分离培养与其代谢组学特性研究. 北京: 中国科学院大学, 2022.
|
| [31] |
Dora D, Weiss GJ, Megyesfalvi Z, et al. Computed Tomography-Based Quantitative Texture Analysis and Gut Microbial Community Signatures Predict Survival in Non-Small Cell Lung Cancer. Cancers (Basel), 2023, 15(20):5091. doi:10.3390/cancers15205091.
|
| [32] |
Song P, Yang D, Wang H, et al. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer, 2020, 11(6):1621-1632. doi:10.1111/1759-7714.13442.
pmid: 32329229
|
| [33] |
Sun Y, Zhang S, Nie Q, et al. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr, 2023, 63(33): 12073-12088. doi:10.1080/10408398.2022.2098249.
|
| [34] |
肖祥, 吴宣諭, 韩洁榕, 等. “肺与大肠相表里”视角下探索肠道菌群与肺癌因果关联及潜在干预中药预测. 中草药, 2024, 55(12): 4108-4120. doi:10.7501/j.issn.0253-2670.2024.12.018.
|
| [35] |
Huber-Ruano I, Calvo E, Mayneris-Perxachs J, et al. Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate. Microbiome, 2022, 10(1):135. doi:10.1186/s40168-022-01306-y.
pmid: 36002880
|
| [36] |
Lee SB, Gupta H, Min BH, et al. A consortium of Hordeum vulgare and gut microbiota against non-alcoholic fatty liver disease via data-driven analysis. Artif Cells Nanomed Biotechnol, 2024, 52(1):250-260. doi:10.1080/21691401.2024.2347380.
|
| [37] |
Nguyen SM, Tran HTT, Long J, et al. Gut microbiome in association with chemotherapy-induced toxicities among patients with breast cancer. Cancer, 2024, 130(11):2014-2030. doi:10.1002/cncr.35229.
pmid: 38319284
|
| [38] |
Gou Y, Lin F, Dan L, et al. Exposure to toluene diisocyanate induces dysbiosis of gut-lung homeostasis: Involvement of gut microbiota. Environ Pollut, 2024, 363(Pt 1):125119. doi:10.1016/j.envpol.2024.125119.
|
| [39] |
Fan L, Chen J, Zhang Q, et al. Fecal microbiota transplantation for hypertension: an exploratory, multicenter, randomized, blinded, placebo-controlled trial. Microbiome, 2025, 13(1):133. doi:10.1186/s40168-025-02118-6.
|
| [40] |
Wang Y, Zhang Y, Lane NE, et al. Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: data from the Xiangya Sarcopenia Study. J Cachexia Sarcopenia Muscle, 2022, 13(5):2340-2351. doi:10.1002/jcsm.13037.
pmid: 35851765
|
| [41] |
Shibata M, Ozato N, Tsuda H, et al. Mouse Model of Anti-Obesity Effects of Blautia hansenii on Diet-Induced Obesity. Curr Issues Mol Biol, 2023, 45(9):7147-7160. doi:10.3390/cimb45090452.
pmid: 37754236
|
| [42] |
Ozato N, Yamaguchi T, Mori K, et al. Two Blautia Species Associated with Visceral Fat Accumulation: A One-Year Longitudinal Study. Biology (Basel), 2022, 11(2):318. doi:10.3390/biology11020318.
|
| [43] |
Jia Y, He T, Wu D, et al. The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota. J Transl Med, 2022, 20(1):281. doi:10.1186/s12967-022-03481-w.
pmid: 35729584
|