[1] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[2] |
毕珂凡, 曹丹, 丁丞, 等. 结核病药物治疗的过去、现状及未来. 浙江大学学报(医学版), 2022, 51(6): 657-668. doi:10.3724/zdxbyxb-2022-0454.
|
[3] |
Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics, 2021, 13(5): 592. doi:10.3390/pharmaceutics13050592.
|
[4] |
张蕊. 中医药治疗结核病的优势和前景. 中国民间疗法, 2023, 31(15): 117-120. doi:10.19621/j.cnki.11-3555/r.2023.1535.
|
[5] |
梁晨, 唐神结, 林明贵. 结核病综合治疗研究进展. 结核与肺部疾病杂志, 2024, 5(1): 70-80. doi:10.19983/j.issn.2096-8493.20230112.
|
[6] |
梁健, 康文婷, 冯晶, 等. 基于“杀虫、补虚”理论探讨中药对脊柱结核免疫调控机制的研究进展. 中国医药导报, 2023, 20(9): 46-49, 57. doi:10.20047/j.issn1673-7210.2023.09.09.
|
[7] |
刘永丹, 高巍, 王亮, 等. 肉桂及其代谢产物在帕金森病治疗中的研究进展. 中国医药科学, 2024, 14(24): 27-30, 87. doi:10.20116/j.issn2095-0616.2024.24.06.
|
[8] |
李雪, 马艳春, 赵婧含, 等. 肉桂的化学成分及药理作用研究进展. 药学研究, 2024, 43(10): 1015-1020. doi:10.13506/j.cnki.jpr.2024.10.015.
|
[9] |
李先芝, 毛琼丽, 刘洋, 等. 肉桂化学成分及药理作用质量标志物研究进展. 化学分析计量, 2024, 33(10): 119-126. doi:10.3969/j.issn.1008-6145.2024.10.022.
|
[10] |
Sawicki R, Golus J, Przekora A, et al. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules, 2018, 23(9): 2381. doi:10.3390/molecules23092381.
|
[11] |
马叶子, 徐浩南, 王佳伟, 等. 肉桂化学成分及药理作用研究进展[J/OL]. 陕西中医药大学学报, 2025: 1-10 [2025-03-20]. http://kns.cnki.net/kcms/detail/61.1501.R.20250319.1548.027.html.
|
[12] |
王清泉, 李亚男, 刘国飞, 等. 肉桂醛药理作用及相关作用机制研究进展. 中华中医药杂志, 2024, 39(12): 6646-6652.
|
[13] |
Polaquini CR, Torrezan GS, Santos VR, et al. Antibacterial and Antitubercular Activities of Cinnamylideneacetophenones. Molecules, 2017, 22(10): 1685. doi:10.3390/molecules22101685.
|
[14] |
王仁凤. 抗结核杆菌肉桂醛衍生物及二甲双胍衍生物的合成与抗菌机制的初探. 贵阳:贵州大学, 2020. doi:10.27047/d.cnki.ggudu.2020.000457.
|
[15] |
孙罗美, 邹胜龙. 肉桂醛的研究与应用. 广东饲料, 2012, 21(12): 29-32. doi:10.3969/j.issn.1005-8613.2012.12.013.
|
[16] |
宋宗辉, 张艺雯, 王玲洁, 等. 肉桂醛的药理活性及其研究进展. 解放军药学学报, 2018, 34(6): 550-554. doi:10.3969/j.issn.1008-9926.2018.06.021.
|
[17] |
王雨琼, 勾长龙, 付莹莹, 等. 植物提取物肉桂醛的抗菌作用及其在动物生产中的应用. 中国兽医杂志, 2014, 50(3): 53-54. doi:10.3969/j.issn.0529-6005.2014.03.018.
|
[18] |
Azeredo CM, Santos TG, Maia BH, et al. In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement Altern Med, 2014, 14: 309. doi:10.1186/1472-6882-14-309.
|
[19] |
Andrade-Ochoa S, Nevárez-Moorillón GV, Sánchez-Torres LE, et al. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern Med, 2015, 15: 332. doi:10.1186/s12906-015-0858-2.
|
[20] |
Mota APP, Campelo TA, Frota CC. Evaluation of the antimicrobial activity of Cinnamomum zeylanicum essential oil and trans-Cinnamaldehyde against resistant Mycobacterium tuberculosis. Biosci J, 2019, 35(1): 296-306. doi:10.14393/BJ-v35n1a2019-41710.
|
[21] |
Boussamba-Digombou KJ, Sandasi M, Kamatou GP, et al. Investigating the Antituberculosis Activity of Selected Commercial Essential Oils and Identification of Active Constituents Using a Biochemometrics Approach and In Silico Modeling. Antibiotics (Basel), 2022, 11(7): 948. doi:10.3390/antibiotics11070948.
|
[22] |
张越, 夏孟雨, 王蕾, 等. 鬼箭羽、肉桂抗结核杆菌成分的逆向跟踪分离. 天然产物研究与开发, 2022, 34(6): 1038-1046. doi:10.16333/j.1001-6880.2022.6.017.
|
[23] |
蒋昌河. 吡嗪酰胺与中药联合抗结核杆菌的药理学研究. 贵阳: 贵州大学, 2020. doi:10.27047/d.cnki.ggudu.2020.000377.
|
[24] |
Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils--a review. Food Chem Toxicol, 2008, 46(2): 446-475. doi:10.1016/j.fct.2007.09.106.
pmid: 17996351
|
[25] |
Ji B, Zhuo L, Yang B, et al. Development and validation of a sensitive and fast UPLC-MS/MS method for simultaneous determination of seven bioactive compounds in rat plasma after oral administration of Guizhi-gancao decoction. J Pharm Biomed Anal, 2017, 137: 23-32. doi:10.1016/j.jpba.2017.01.021.
pmid: 28088663
|
[26] |
Zhao H, Xie Y, Yang Q, et al. Pharmacokinetic study of cinnamaldehyde in rats by GC-MS after oral and intravenous administration. J Pharm Biomed Anal, 2014, 89: 150-157. doi:10.1016/j.jpba.2013.10.044.
pmid: 24291110
|
[27] |
Zhao H, Yang Q, Xie Y, et al. Simultaneous determination of cinnamaldehyde and its metabolite in rat tissues by gas chromatography-mass spectrometry. Biomed Chromatogr, 2015, 29(2): 182-187. doi:10.1002/bmc.3254.
pmid: 24898181
|
[28] |
National Toxicology Program. NTP toxicology and carcinogenesis studies of trans-cinnamaldehyde (CAS No. 14371-10-9) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser, 2004(514): 1-281.
pmid: 15146216
|
[29] |
中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019, 41(10): 1025-1073. doi:10.3969/j.issn.1000-6621.2019.10.001.
|
[30] |
Abrahams KA, Besra GS. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology, 2018, 145(2): 116-133. doi:10.1017/S0031182016002377.
pmid: 27976597
|
[31] |
Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother, 2005, 49(6):2474-2478. doi:10.1128/AAC.49.6.2474-2478.2005.
pmid: 15917549
|
[32] |
Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog, 2018, 120: 198-203. doi:10.1016/j.micpath.2018.04.036.
|
[33] |
Nowotarska SW, Nowotarski K, Grant IR, et al. Mechanisms of Antimicrobial Action of Cinnamon and Oregano Oils, Cinnamaldehyde, Carvacrol, 2,5-Dihydroxybenzaldehyde, and 2-Hydroxy-5-Methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods, 2017, 6(9): 72. doi:10.3390/foods6090072.
|
[34] |
刘晓博, 李玉艳, 尤启冬. β-酮脂酰-ACP合成酶(FabH)抑制剂研究进展. 化学进展, 2009, 21(9): 1930-1938.
|
[35] |
Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A, 2014, 111(13): 4958-4963. doi:10.1073/pnas.1403078111.
|
[36] |
Sieniawska E, Sawicki R, Golus J, et al. Untargetted Metabolomic Exploration of the Mycobacterium tuberculosis Stress Response to Cinnamon Essential Oil. Biomolecules, 2020, 10(3): 357. doi:10.3390/biom10030357.
|
[37] |
Datta P, Ravi J, Guerrini V, et al. The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol Microbiol, 2015, 97(3): 408-422. doi:10.1111/mmi.13037.
|
[38] |
Sawicki R, Sieniawska E, Swatko-Ossor M, et al. The frequently occurring components of essential oils beta elemene and R-limonene alter expression of dprE1 and clgR genes of Mycobacterium tuberculosis H37Ra. Food Chem Toxicol, 2018, 112: 145-149. doi:10.1016/j.fct.2017.12.052.
pmid: 29288759
|
[39] |
Li X, Ma S. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. Eur J Med Chem, 2015, 95: 1-15. doi:10.1016/j.ejmech.2015.03.026.
pmid: 25791674
|
[40] |
Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 2019, 139: 104405. doi:10.1016/j.fitote.2019.104405.
|
[41] |
Wehenkel A, Fernandez P, Bellinzoni M, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett, 2006, 580(13): 3018-3022. doi:10.1016/j.febslet.2006.04.046.
pmid: 16674948
|
[42] |
Jani C, Eoh H, Lee JJ, et al. Regulation of polar peptidoglycan biosynthesis by Wag 31 phosphorylation in mycobacteria. BMC Microbiol, 2010, 10: 327. doi:10.1186/1471-2180-10-327.
|