中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (7): 940-946.doi: 10.19982/j.issn.1000-6621.20250038
毛莉蓉1, 聂艳辉1, 安红娟1, 王睿岚1, 董恩军1, 苏悦1, 赵文娟1, 杜经丽1(), 安慧茹2(
)
收稿日期:
2025-01-23
出版日期:
2025-07-10
发布日期:
2025-07-03
通信作者:
安慧茹,Email:
Mao Lirong1, Nie Yanhui1, An Hongjuan1, Wang Ruilan1, Dong Enjun1, Su Yue1, Zhao Wenjuan1, Du Jingli1(), An Huiru2(
)
Received:
2025-01-23
Online:
2025-07-10
Published:
2025-07-03
Contact:
An Huiru, Email: 摘要:
受益于多组学分析的快速发展,基于蛋白质组学及代谢组学的质谱检测(mass spectrometry, MS)技术有助于骨关节结核的辅助诊断。由此得知的骨关节结核相关蛋白质标志物及代谢产物可为结核分枝杆菌与宿主互作机制的深入研究提供更多的思路,从而指导新型抗结核药物与疫苗的开发。立足于蛋白质组学及代谢组学分析,笔者围绕MS技术对骨关节结核的诊断效能及其对宿主免疫功能的影响作一综述,旨在进一步探讨其应用价值。
中图分类号:
毛莉蓉, 聂艳辉, 安红娟, 王睿岚, 董恩军, 苏悦, 赵文娟, 杜经丽, 安慧茹. 质谱检测技术在骨关节结核诊断中的应用效能及研究进展[J]. 中国防痨杂志, 2025, 47(7): 940-946. doi: 10.19982/j.issn.1000-6621.20250038
Mao Lirong, Nie Yanhui, An Hongjuan, Wang Ruilan, Dong Enjun, Su Yue, Zhao Wenjuan, Du Jingli, An Huiru. Application efficacy and research progress of mass spectrometry detection technology in the diagnosis of osteotuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(7): 940-946. doi: 10.19982/j.issn.1000-6621.20250038
[1] | Peto HM, Pratt RH, Harrington TA, et al. Epidemiology of extrapulmonary tuberculosis in the United States, 1993—2006. Clin Infect Dis, 2009, 49(9): 1350-1357. doi:10.1086/605559. |
[2] |
Baidoo EEK, Teixeira Benites V. Mass spectrometry-based microbial metabolomics: Techniques, analysis, and applications. Methods Mol Biol, 2019, 1859: 11-69. doi:10.1007/978-1-4939-8757-3_2.
pmid: 30421222 |
[3] | Kaushik A, Bandyopadhyay S, Porwal C, et al. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun, 2022, 619: 15-21. doi:10.1016/j.bbrc.2022.06.021. |
[4] |
Liu Y, Kaffah N, Pandor S, et al. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep, 2023, 13(1): 10390. doi:10.1038/s41598-023-37641-9.
pmid: 37369807 |
[5] | Yu S, Zou Y, Ma X, et al. Evolution of LC-MS/MS in clinical laboratories. Clin Chim Acta, 2024, 555: 117797. doi:10.1016/j.cca.2024.117797. |
[6] | Calderaro A, Chezzi C. MALDI-TOF MS: A reliable tool in the real life of the clinical microbiology laboratory. Microorganisms, 2024, 12(2): 322. doi:10.3390/microorganisms12020322. |
[7] | Wang YD, Yang J, Li Q, et al. UPLC-Q-TOF-MS/MS analysis of seco-sativene sesquiterpenoids to detect new and bioactive analogues from plant pathogen bipolaris sorokiniana. Front Microbiol, 2022, 13: 807014. doi:10.3389/fmicb.2022.807014. |
[8] |
Cox J, Mann M. Is proteomics the new genomics?. Cell, 2007, 130(3): 395-398. doi:10.1016/j.cell.2007.07.032.
pmid: 17693247 |
[9] | Hajdu T, Fóthi E, Kovári I, et al. Bone tuberculosis in Roman Period Pannonia (western Hungary). Mem Inst Oswaldo Cruz, 2012, 107(8): 1048-1053. doi:10.1590/s0074-02762012000800014. |
[10] | 罗霞, 孙强正, 肖迪, 等. 血清2型猪链球菌全菌体蛋白的免疫蛋白质组学研究. 中国人兽共患病学报, 2009, 25(4): 299-303. doi:10.3969/j.issn.1002-2694.2009.04.001. |
[11] | Abdul-Majid KB, Kenny PA, Finlay-Jones JJ. The effect of the bacterial product, succinic acid, on neutrophil bactericidal activity. FEMS Immunol Med Microbiol, 1997, 17(2): 79-86. doi:10.1111/j.1574-695X.1997.tb00999.x. |
[12] | 任利成, 黄晓元, 张丕红, 等. 珀酸对人外周血中性粒细胞凋亡的影响. 中华烧伤杂志, 2007, 23(6): 417-419. doi:10.3760/cma.j.issn.1009-2587.2007.06.006. |
[13] |
Xiao Y, Sha W, Tian Z, et al. Adenylate kinase: a novel antigen for immunodiagnosis and subunit vaccine against tuberculosis. J Mol Med (Berl), 2016, 94(7): 823-834. doi:10.1007/s00109-016-1392-5.
pmid: 26903285 |
[14] | Xu G, Xue J, Jiang J, et al. Proteomic analysis reveals critical molecular mechanisms involved in the macrophage anti-spinal tuberculosis process. Tuberculosis (Edinb), 2021, 126: 102039. doi:10.1016/j.tube.2020.102039. |
[15] |
Singel KL, Segal BH. NOX2-dependent regulation of inflammation. Clin Sci (Lond), 2016, 130(7): 479-490. doi:10.1042/CS20150660.
pmid: 26888560 |
[16] |
Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem, 2016, 85: 765-792. doi:10.1146/annurev-biochem-060815-014442.
pmid: 27050287 |
[17] |
Zeng MY, Miralda I, Armstrong CL, et al. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol, 2019, 34(2): 27-38. doi:10.1111/omi.12252.
pmid: 30632295 |
[18] | Soldano S, Pizzorni C, Paolino S, et al. Alternatively activated (M2) macrophage phenotype is inducible by endothelin-1 in cultured human macrophages. PLoS One, 2016, 11(11): e0166433. doi:10.1371/journal.pone.0166433. |
[19] | Baez IB, Sampieri CL, Solano FC, et al. Activity of matrix metalloproteinase 2 and 9 isoforms in sputum samples from individuals infected with M.tuberculosis. Microb Pathog, 2019, 135: 103607. doi:10.1016/j.micpath.2019.103607. |
[20] | Smit MJ, Verdijk P, van der Raaij-Helmer EM, et al. CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p 42 MAPK nor Akt/PI-3 kinase. Blood, 2003, 102(6): 1959-1965. doi:10.1182/blood-2002-12-3945. |
[21] |
Dufour JH, Dziejman M, Liu MT, et al. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol, 2002, 168(7): 3195-3204. doi:10.4049/jimmunol.168.7.3195.
pmid: 11907072 |
[22] | Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand (CXCL) 10 in autoimmune diseases. Autoimmun Rev, 2014, 13(3): 272-280. doi:10.1016/j.autrev.2013.10.010. |
[23] | Hoff ST, Salman AM, Ruhwald M, et al. Human B cells produce chemokine CXCL 10 in the presence of Mycobacterium tuberculosis specific T cells. Tuberculosis (Edinb), 2015, 95(1): 40-47. doi:10.1016/j.tube.2014.10.005. |
[24] | Xu W, Joo H, Clayton S, et al. Macrophages induce differentiation of plasma cells through CXCL10/IP-10. J Exp Med, 2012, 209(10): 1813-1823. doi:10.1084/jem.20112142. |
[25] | Chen X, Jia X, Lei H, et al. Screening and identification of serum biomarkers of osteoarticular tuberculosis based on mass spectrometry. J Clin Lab Anal, 2020, 34(7): e23297. doi:10.1002/jcla.23297. |
[26] | 朱旭, 李丹丹, 邱玲. 补体因子H相关蛋白1的研究进展. 临床检验杂志, 2020, 38(4): 280-282. doi:10.13602/j.cnki.jcls.2020.04.11. |
[27] | 莫颖, 王凤梅, 帕提古丽·阿斯讨拜, 等. 补体因子H相关蛋白1促进巨噬细胞分泌肿瘤坏死因子-α调控足细胞增殖和迁移实验研究. 陕西医学杂志, 2024, 53(4): 444-448. doi:10.3969/j.issn.1000-7377.2024.04.003. |
[28] |
Irmscher S, Brix SR, Zipfel SLH, et al. Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies. Nat Commun, 2019, 10(1): 2961. doi:10.1038/s41467-019-10766-0.
pmid: 31273197 |
[29] | Rastogi S, Ellinwood S, Augenstreich J, et al. Mycobacterium tuberculosis inhibits the NLRP 3 inflammasome activation via its phosphokinase PknF. PLoS Pathog, 2021, 17(7): e1009712. doi:10.1371/journal.ppat.1009712. |
[30] |
Skerka C, Chen Q, Fremeaux-Bacchi V, et al. Complement factor H related proteins (CFHRs). Mol Immunol, 2013, 56(3): 170-180. doi:10.1016/j.molimm.2013.06.001.
pmid: 23830046 |
[31] |
De La Fuente J, Gortázar C, Juste R. Complement component 3: a new paradigm in tuberculosis vaccine. Expert Rev Vaccines, 2016, 15(3): 275-277. doi:10.1586/14760584.2016.1125294.
pmid: 26605515 |
[32] |
Kumar V, Pouw RB, Autio MI, et al. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet, 2022, 109(9): 1680-1691. doi:10.1016/j.ajhg.2022.08.001.
pmid: 36007525 |
[33] | Wu X, Li L, Jinhabure, et al. Radix sophorae flavescentis of sophora flavescens aiton inhibits LPS-induced macrophage pro-inflammatory response via regulating CFHR2 expression. J Ethnopharmacol, 2024, 331: 118210. doi:10.1016/j.jep.2024.118210. |
[34] | Chen X, Wang J, Wang J, et al. Several potential serum proteomic biomarkers for diagnosis of osteoarticular tuberculosis based on mass spectrometry. Clin Chim Acta, 2023, 547: 117447. doi:10.1016/j.cca.2023.117447. |
[35] |
Buhlmann D, Eberhardt HU, Medyukhina A, et al. FHR3 blocks C3d-mediated coactivation of human B cells. J Immunol, 2016, 197(2): 620-629. doi:10.4049/jimmunol.1600053.
pmid: 27279373 |
[36] | McRae JL, Duthy TG, Griggs KM, et al. Human factor H-related protein 5 has cofactor activity, inhibits C 3 convertase activity, binds heparin and C-reactive protein, and associa-tes with lipoprotein. J Immunol, 2005, 174(10): 6250-6256. doi:10.4049/jimmunol.174.10.6250. |
[37] |
Maillet F, Kazatchkine MD, Glotz D, et al. Heparin prevents formation of the human C 3 amplification convertase by inhibiting the binding site for B on C3b. Mol Immunol, 1983, 20(12): 1401-1404. doi:10.1016/0161-5890(83)90172-4.
pmid: 6558419 |
[38] |
Inoue M, Niki M, Ozeki Y, et al. High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep, 2018, 8(1): 6736. doi:10.1038/s41598-018-24233-1.
pmid: 29712918 |
[39] | Lord MS, Melrose J, Day AJ, et al. The inter-α-trypsin inhibitor family: Versatile molecules in biology and pathology. J Histochem Cytochem, 2020, 68(12): 907-927. doi:10.1369/0022155420940067. |
[40] |
Scavenius C, Poulsen EC, Thøgersen IB, et al. Matrix-degrading protease ADAMTS-5 cleaves inter-α-inhibitor and releases active heavy chain 2 in synovial fluids from arthritic patients. J Biol Chem, 2019, 294(42): 15495-15504. doi:10.1074/jbc.RA119.008844.
pmid: 31484722 |
[41] |
Okroj M, Holmquist E, Sjölander J, et al. Heavy chains of inter alpha inhibitor (IαI) inhibit the human complement system at early stages of the cascade. J Biol Chem, 2012, 287(24): 20100-20110. doi:10.1074/jbc.M111.324913.
pmid: 22528482 |
[42] |
Sanggaard KW, Sonne-Schmidt CS, Krogager TP, et al. The transfer of heavy chains from bikunin proteins to hyaluronan requires both TSG-6 and HC2. J Biol Chem, 2008, 283(27): 18530-18537. doi:10.1074/jbc.M800874200.
pmid: 18448433 |
[43] |
Amorim S, Reis CA, Reis RL, et al. Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol, 2021, 39(1): 90-104. doi:10.1016/j.tibtech.2020.06.003.
pmid: 32654775 |
[44] | Whittington AM, Turner FS, Baark F, et al. An acidic microen-vironment in tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog, 2023, 19(7): e1011495. doi:10.1371/journal.ppat.1011495. |
[45] | Arbués A, Schmidiger S, Kammüller M, et al. Extracellular matrix-induced GM-CSF and hypoxia promote immune control of Mycobacterium tuberculosis in human in vitro granulomas. Front Immunol, 2021, 12: 727508. doi:10.3389/fimmu.2021.727508. |
[46] |
Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal, 2015, 113: 108-120. doi:10.1016/j.jpba.2014.12.017.
pmid: 25577715 |
[47] | Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol, 2016, 17(7): 451-459. doi:10.1038/nrm.2016.25. |
[48] | Chen X, Ye J, Lei H, et al. Novel potential diagnostic serum biomarkers of metabolomics in osteoarticular tuberculosis patients: A preliminary study. Front Cell Infect Microbiol, 2022, 12: 827528. doi:10.3389/fcimb.2022.827528. |
[49] | Furse S, de Kroon AI. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol Membr Biol, 2015, 32(4): 117-119. doi:10.3109/09687688.2015.1066894. |
[50] | Nambi S, Long JE, Mishra BB, et al. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe, 2015, 17(6): 829-837. doi:10.1016/j.chom.2015.05.008. |
[51] | Reichmann MT, Tezera LB, Vallejo AF, et al. Integrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets. J Clin Invest, 2021, 131(15): e148136. doi:10.1172/JCI148136. |
[52] | Nicolson GL, Ferreira de Mattos G. A brief introduction to some aspects of the fluid-mosaic model of cell membrane structure and its importance in membrane lipid replacement. Membranes (Basel), 2021, 11(12): 947. doi:10.3390/membranes11120947. |
[53] | Prakhar P, Bhatt B, Lohia GK, et al. G9a and Sirtuin 6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog, 2023, 19(10): e1011731. doi:10.1371/journal.ppat.1011731. |
[54] | Speer A, Sun J, Danilchanka O, et al. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol, 2015, 97(5): 881-897. doi:10.1111/mmi.13073. |
[55] |
Yan J, Horng T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol, 2020, 30(12): 979-989. doi:10.1016/j.tcb.2020.09.006.
pmid: 33036870 |
[56] |
Wu Y, Gulbins E, Grassmé H. The function of sphingomyelinases in mycobacterial infections. Biol Chem, 2018, 399(10): 1125-1133. doi:10.1515/hsz-2018-0179.
pmid: 29924725 |
[57] | 王超然, 娄才立, 施建党, 等. 代谢组学在脊柱结核血清诊断标志物筛选中的应用. 中华实验外科杂志, 2023, 40(11): 2220-2223. doi:10.3760/cma.j.cn421213-20230509-00256. |
[58] |
Jamwal SV, Mehrotra P, Singh A, et al. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep, 2016, 6: 23089. doi:10.1038/srep23089.
pmid: 26980157 |
[59] |
Hung ND, Kim MR, Sok DE. 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids, 2011, 46(10): 893-906. doi:10.1007/s11745-011-3589-2.
pmid: 21744277 |
[60] |
Lau SK, Lee KC, Curreem SO, et al. Metabolomic profiling of plasma from patients with tuberculosis by use of untargeted mass spectrometry reveals novel biomarkers for diagnosis. J Clin Microbiol, 2015, 53(12): 3750-3759. doi:10.1128/JCM.01568-15.
pmid: 26378277 |
[61] |
Tobin DM, Vary JC Jr, Ray JP, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5): 717-730. doi:10.1016/j.cell.2010.02.013.
pmid: 20211140 |
[62] | Amaral EP, Foreman TW, Namasivayam S, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med, 2022, 219(11): e20220504. doi:10.1084/jem.20220504. |
[63] | Syed SK, Bui HH, Beavers LS, et al. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am J Physiol Endocrinol Metab, 2012, 303(12): E1469-78. doi:10.1152/ajpendo.00269.2012. |
[64] | Williams V, Onwuchekwa C, Vos AG, et al. Tuberculosis treatment and resulting abnormal blood glucose: a scoping review of studies from 1981—2021. Glob Health Action, 2022, 15(1): 2114146. doi:10.1080/16549716.2022.2114146. |
[65] | Terán G, Li H, Catrina SB, et al. High glucose and carbonyl stress impair HIF-1-regulated responses and the control of Mycobacterium tuberculosis in macrophages. mBio, 2022, 13(5): e0108622. doi:10.1128/mbio.01086-22. |
[66] | Ssekamatte P, Sande OJ, van Crevel R, et al. Immunologic, metabolic and genetic impact of diabetes on tuberculosis susceptibility. Front Immunol, 2023, 14: 1122255. doi:10.3389/fimmu.2023.1122255. |
[67] | 陈汐濛, 贾兴旺, 雷红, 等. 应用基质辅助激光解吸电离飞行时间质谱行骨关节结核血清鉴别标志物的初探. 中华检验医学杂志, 2019, 42(6): 420-426. doi:10.3760/cma.j.issn.1009-8158.2019.06.006. |
[68] |
López-Hernández Y, Patiño-Rodríguez O, García-Orta ST, et al. Mass spectrometry applied to the identification of Mycobacterium tuberculosis and biomarker discovery. J Appl Microbiol, 2016, 121(6): 1485-1497. doi:10.1111/jam.13323.
pmid: 27718305 |
[69] | Ou X, Song Z, Zhao B, et al. Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection. Eur J Clin Microbiol Infect Dis, 2024, 43(1): 105-114. doi:10.1007/s10096-023-04700-y. |
[70] | Shi J, He G, Ning H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb), 2022, 135: 102209. doi:10.1016/j.tube.2022.102209. |
[71] | Gątarek J, Kałużna-Czaplińska J. Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson’s disease. Expert Rev Proteomics, 2024, 21(1-3): 13-25. doi:10.1080/14789450.2024.2315193. |
[72] | Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol, 2020, 15(3): 404-411. doi:10.2215/CJN.07420619. |
[1] | 程文, 朱慧, 付雷, 张炜焱, 张立群, 陆宇. HPLC-MS/MS法同时测定血浆中贝达喹啉、普托马尼和利奈唑胺的方法学建立及应用[J]. 中国防痨杂志, 2025, 47(5): 613-622. |
[2] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会. 核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和非结核分枝杆菌病诊断中的临床应用专家共识[J]. 中国防痨杂志, 2023, 45(6): 543-558. |
[3] | 吴明歧, 闫世春, 刘玉琴, 郭鑫, 王美杰, 田晶, 侯绍英. 基于同位素标记的相对和绝对定量的糖尿病并发肺结核患者血浆蛋白质组学研究[J]. 中国防痨杂志, 2022, 44(5): 442-449. |
[4] | 王秀军, 刘秋月, 陈晓凤, 于磊, 马艳, 韩芬. 基于非标记定量技术的继发性肺结核患者血浆蛋白质组学研究[J]. 中国防痨杂志, 2021, 43(2): 159-165. |
[5] | 杨瑜 谢贝 吴玲 孟繁荣 王楠 雷杰 张言斌 彭德虎 谭守勇 刘志辉. 治愈的肺结核患者治疗前后血清蛋白双向电泳初步比较分析[J]. 中国防痨杂志, 2017, 39(3): 315-317. |
[6] | 黄迪希,谭守勇,刘志辉. 蛋白质组学在结核性胸腔积液诊断中的现状及进展[J]. 中国防痨杂志, 2016, 38(3): 180-184. |
[7] | 符立贤,林绍美. 62例初治肺结核患者血清纤维化指标监测的临床意义[J]. 中国防痨杂志, 2014, 36(12): 1080-1083. |
[8] | 郭少晨,朱慧,徐建,郝兰虎,王彬,付雷,陈明亭,周林,池俊英,陆宇. 两种国产抗结核固定剂量复合剂中利福平的药代动力学和生物等效性研究[J]. 中国防痨杂志, 2014, 36(12): 1075-1079. |
[9] | 何秀云 朱传智 逄宇 黄香玉 蒋丽气 赵雁林 庄玉辉. 耐异烟肼和链霉素的结核分枝杆菌临床分离株与敏感株差异蛋白表达研究[J]. 中国防痨杂志, 2013, 35(3): 173-178. |
[10] | 方素芳 翁丽珍 黄明翔 李学玲 郭巧玲 郑晓虎 陈晓红 张丽水 林敏芳 刘坦业. 耐多药肺结核患者血清蛋白指纹图谱测定初步研究[J]. 中国防痨杂志, 2012, 34(1): 40-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||