[1] |
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[2] |
Cox E, Laessig K. FDA approval of bedaquiline-the benefit-risk balance for drug-resistant tuberculosis. N Engl J Med, 2014, 371(8):689-691. doi:10.1056/NEJMp1314385.
|
[3] |
Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J, 2017, 49(5): 1700387. doi:10.1183/13993003.00387-2017.
|
[4] |
Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, 2018, 392(10150): 821-834. doi:10.1016/S0140-6736(18)31644-1.
pmid: 30215381
|
[5] |
Olayanju O, Limberis J, Esmail A, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J, 2018, 51(5): 1800544. doi:10.1183/13993003.00544-2018.
|
[6] |
梁晨, 唐神结, 林明贵. 结核病综合治疗研究进展. 结核与肺部疾病杂志, 2024, 5(1): 70-80. doi:10.19983/j.issn.2096-8493.20230112.
|
[7] |
Guglielmetti L. Bedaquiline for the treatment of multidrug-resistant tuberculosis: another missed opportunity?. Eur Respir J, 2017, 49(5): 1700738. doi:10.1183/13993003.00738-2017.
|
[8] |
Mallick JS, Nair P, Abbew ET, et al. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist, 2022, 4(2): dlac029. doi:10.1093/jacamr/dlac029.
|
[9] |
孙慧娟, 苏伟, 陈伟. 利福平耐药结核病患者不良治疗结局及其影响因素研究进展. 结核与肺部疾病杂志, 2024, 5(6): 573-582. doi:10.19983/j.issn.2096-8493.2024111.
|
[10] |
Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3): 1601719. doi:10.1183/13993003.01719-2016.
|
[11] |
Huitric E, Verhasselt P, Koul A, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother, 2010, 54(3): 1022-1028. doi:10.128/AAC.01611-09.
pmid: 20038615
|
[12] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8): 4590-4599. doi:10.1128/AAC.00753-16.
pmid: 27185800
|
[13] |
Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or beda-quiline. J Antimicrob Chemother, 2017, 72(3): 684-690. doi:10.1093/jac/dkw502.
pmid: 28031270
|
[14] |
Salfinger M, Somoskövi A. Multidrug-resistant tuberculosis and bedaquiline. N Engl J Med, 2014, 371(25): 2435-2436. doi:10.1056/NEJMc1412235.
|
[15] |
Omar Shaheed V, Ismail F, Ndjeka N, et al. Bedaquiline-Resistant Tuberculosis Associated with Rv0678 Mutations. N Engl J Med, 2022, 386(1): 93-94. doi:10.1056/NEJMc2103049.
|
[16] |
Liu Y, Gao J, Du J, et al. Acquisition of clofazimine resis-tance following bedaquiline treatment for multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 102: 392-396. doi:10.1016/j.ijid.2020.10.081.
|
[17] |
Snobre J, Villellas MC, Coeck N, et al. Bedaquiline- and clofazimine-selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Sci Rep, 2023, 13(1): 10444. doi:10.1038/s41598-023-36955-y.
|
[18] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024, 10(1): 22. doi:10.1038/s41572-024-00504-2.
pmid: 38523140
|
[19] |
Cuthbert BJ, Mendoza J, de Miranda R, et al. The structure of Mycobacterium thermoresistibile MmpS 5 reveals a conserved disulfide bond across mycobacteria. Metallomics, 2024, 16(3):mfae011. doi:10.1093/mtomcs/mfae011.
|
[20] |
史静华, 李东硕, 岑山, 等. 结核分枝杆菌MmpL5蛋白与贝达喹啉及氯法齐明相互作用的关键结合区域研究. 中国抗生素杂志, 2024, 49(8): 890-897. doi:10.13461/j.cnki.cja.007743.
|
[21] |
Bailo R, Bhatt A, Aínsa JA. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol, 2015, 96(3): 159-167. doi:10.1016/j.bcp.2015.05.001.
|
[22] |
Briffotaux J, Huang W, Wang X, et al. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb), 2017, 107: 13-19. doi:10.1016/j.tube.2017.08.001.
|
[23] |
Sandhu P, Akhter Y. The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. Int J Med Microbiol, 2015, 305(3): 413-423. doi:10.1016/j.ijmm.2015.03.005.
|
[24] |
Farnia P, Besharati S, Farina P, et al. The Role of Efflux Pumps transporter in Multi-drug Resistant Tuberculosis: Mycobacterial memberane protein (MmpL5). Int J Mycobacteriol, 2024, 13(1): 7-14. doi:0.4103/ijmy.ijmy_37_24.
|
[25] |
Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7): e102135. doi:10.1371/journal.pone.0102135.
|
[26] |
Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis (Edinb), 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003.
|
[27] |
Xu J, Li D, Shi J, et al. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M.tuberculosis. Antimicrob Agents Chemother (Bethesda), 2023, 67(7): e0153222. doi:10.1128/aac.01532-22.
|
[28] |
Yamamoto K, Nakata N, Mukai T, et al. Coexpression of MmpS5 and MmpL 5 Contributes to Both Efflux Transporter MmpL5 Trimerization and Drug Resistance in Mycobacterium tuberculosis. mSphere, 2021, 6(1): e00518-20. doi:10.1128/mSphere.00518-20.
|
[29] |
Jing W, Zhang F, Shang Y, et al. Deciphering the possible role of MmpL 7 efflux pump in SQ109 resistance in Mycobacterium tuberculosis. Ann Clin Microbiol Antimicrob, 2024, 23(1): 87. doi:10.1186/s12941-024-00746-8.
|
[30] |
李东硕, 王彬, 陆宇, 等. 结核分枝杆菌膜蛋白MmpS5-MmpL5的表达及功能研究. 中国防痨杂志, 2022, 44(3): 227-233. doi:10.19982/j.issn.1000-6621.20210587.
|
[31] |
Matagne A, Joris B, Frère JM. Anomalous behaviour of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups. Biochem J, 1991, 280 (Pt 2): 553-556. doi:10.1042/bj2800553.
|
[32] |
Hu CC, Ghabrial SA. The conserved, hydrophilic and arginine-rich N-terminal domain of cucumovirus coat proteins contributes to their anomalous electrophoretic mobilities in sodium dodecylsulfate-polyacrylamide gels. J Virol Methods, 1995, 55(3): 367-379. doi:10.1016/0166-934(95)00085-1.
pmid: 8609202
|
[33] |
Papageorgiou FT, Soteriadou KP. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun, 2002, 70(12): 6976-6986. doi:10.1128/IAI.70.12.6976-86.2002.
pmid: 12438377
|
[34] |
Rath A, Glibowicka M, Nadeau VG, et al. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 2009, 106(6): 1760-1765. doi:10.073/pnas.0813167106.
|
[35] |
Tiwari P, Kaila P, Guptasarma P. Understanding anomalous mobility of proteins on SDS-PAGE with special reference to the highly acidic extracellular domains of human E- and N-cadherins. Electrophoresis, 2019, 40(9): 1273-1281. doi:10.002/elps.201800219.
pmid: 30702765
|
[36] |
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci, 2024, 25(3): 1764. doi:10.3390/ijms25031764.
|
[37] |
Gan SD, Patel KR. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J Invest Dermatol, 2013, 133(9): e12. doi:0.1038/jid.2013.287.
|
[38] |
Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem, 2017, 170: 75-84. doi:10.1016/j.jinorgbio.2017.02.013.
|
[39] |
Vargas R Jr, Freschi L, Spitaleri A, et al. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resis-tance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2021, 65(11): e0116421. doi:10.1128/AAC.01164-21.
|