[1] |
Villar-Hernández R, Ghodousi A, Konstantynovska O, et al. Tuberculosis: current challenges and beyond. Breathe(Sheff), 2023, 19(1): 220166. doi:10.1183/20734735.0166-2022.
|
[2] |
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[3] |
Tang X, Huang Y, Lei J, et al. The single-cell sequencing: new developments and medical applications. Cell Biosci, 2019, 9: 53. doi:10.1186/s13578-019-0314-y.
pmid: 31391919
|
[4] |
Ke M, Elshenawy B, Sheldon H, et al. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity. Bioessays, 2022, 44(11): e2200084. doi:10.1002/bies.202200084.
|
[5] |
Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med, 2020, 52(9): 1419-1427. doi:10.1038/s12276-020-00499-2.
|
[6] |
Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis, 2005, 85(5-6): 277-293. doi:10.1016/j.tube.2005.08.008.
pmid: 16249122
|
[7] |
Tiwari S, Casey R, Goulding CW, et al. Infect and inject: how Mycobacterium tuberculosis exploits its major virulence-associated type Ⅶ secretion system, ESX-1. Microbiol Spectr, 2019, 7(3): 10.1128/microbiolspec.bai-0024-2019. doi:10.1128/microbiolspec.BAI-0024-2019.
|
[8] |
Zheng W, Borja M, Dorman L, et al. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M.tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. bioRxiv, 2024: 2024.04.20.590421. doi:10.1101/2024.04.20.590421.
|
[9] |
Bobba S, Howard NC, Das S, et al. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun, 2023, 91(10): e00201-23. doi:10.1128/iai.00201-23.
|
[10] |
Akter S, Chauhan KS, Dunlap MD, et al. Mycobacterium tuberculosis infection drives a type Ⅰ IFN signature in lung lymphocytes. Cell Rep, 2022, 39(12): 110983. doi:10.1016/j.celrep.2022.110983.
|
[11] |
Zhang X, Zhao Z, Wu Q, et al. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep, 2023, 42(3): 112177. doi:10.1016/j.celrep.2023.112177.
|
[12] |
Rubin EJ. The granuloma in tuberculosis—friend or foe?. N Engl J Med, 2009, 360(23): 2471-2473. doi:10.1056/NEJMcibr0902539.
|
[13] |
Scanga CA, Flynn JL. Modeling tuberculosis in nonhuman primates. Cold Spring Harb Perspect Med, 2014, 4(12): a018564. doi:10.1101/cshperspect.a018564.
|
[14] |
Gideon HP, Hughes TK, Tzouanas CN, et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity, 2022, 55(5): 827-846.e10. doi:10.1016/j.immuni.2022.04.004.
pmid: 35483355
|
[15] |
Hunter L, Ruedas-Torres I, Agulló-Ros I, et al. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci, 2023, 10: 1264833. doi:10.3389/fvets.2023.1264833.
|
[16] |
Williams A, Orme IM. Animal models of tuberculosis: an overview. Microbiol Spectr, 2016, 4(4). doi:10.1128/microbiolspec.TBTB2-0004-2015.
|
[17] |
Alfaro JA, Bohländer P, Dai M, et al. The emerging landscape of single-molecule protein sequencing technologies. Nat Methods, 2021, 18(6): 604-617. doi:10.1038/s41592-021-01143-1.
pmid: 34099939
|
[18] |
Pan J, Zhang X, Xu J, et al. Landscape of exhausted T cells in tuberculosis revealed by single-cell sequencing. Microbiol Spectr, 2023, 11(2): e02839-22. doi:10.1128/spectrum.02839-22.
|
[19] |
Jiang J, Cao Z, Li B, et al. Disseminated tuberculosis is associated with impaired T cell immunity mediated by non-canonical NF-κB pathway. J Infect, 2024, 89(3): 106231. doi:10.1016/j.jinf.2024.106231.
|
[20] |
Jiang J, Cao Z, Xiao L, et al. Single-cell profiling identifies T cell subsets associated with control of tuberculosis dissemination. Clin Immunol, 2023, 248: 109266. doi:10.1016/j.clim.2023.109266.
|
[21] |
Pisu D, Huang L, Narang V, et al. Single cell analysis of M.tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med, 2021, 218(9): e20210615. doi:10.1084/jem.20210615.
|
[22] |
Gouzy A. Use of single-cell technology to improve our understanding of the role of TLR2 in macrophage-Mycobacterium tuberculosis interaction. mSystems, 2023, 8(5): e0073023. doi:10.1128/msystems.00730-23.
|
[23] |
Jani C, Solomon SL, Peters JM, et al. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo. mSystems, 2023, 8(4): e0005223. doi:10.1128/msystems.00052-23.
|
[24] |
Shekarkar Azgomi M, Badami GD, Lo Pizzo M, et al. Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Mycobacterium tuberculosis Latency. Cells, 2024, 13(4): 293. doi:10.3390/cells13040293.
|
[25] |
Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine, 2020, 53: 102686. doi:10.1016/j.ebiom.2020.102686.
|
[26] |
Guo Q, Zhong Y, Wang Z, et al. Single-cell transcriptomic landscape identifies the expansion of peripheral blood monocytes as an indicator of HIV-1-TB co-infection. Cell Insight, 2022, 1(1): 100005. doi:10.1016/j.cellin.2022.100005.
|
[27] |
Ahmad M, Ibrahim WH, Sarafandi SA, et al. Diagnostic value of bronchoalveolar lavage in the subset of patients with negative sputum/smear and mycobacterial culture and a suspicion of pulmonary tuberculosis. Int J Infect Dis, 2019, 82: 96-101. doi:10.1016/j.ijid.2019.03.021.
pmid: 30904678
|
[28] |
Chen Q, Hu C, Lu W, et al. Characteristics of alveolar macrophages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing. J Biomed Res, 2022, 36(3): 167-180. doi:10.7555/JBR.36.20220007.
|
[29] |
Yang Q, Qi F, Ye T, et al. The interaction of macrophages and CD 8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect, 2023, 12(2): 2239940. doi:10.1080/22221751.2023.2239940.
|
[30] |
Xiao G, Huang W, Zhong Y, et al. Uncovering the Bronchoalveolar Single-Cell Landscape of Patients With Pulmonary Tuberculosis With Human Immunodeficiency Virus Type 1 Coinfection. J Infect Dis, 2024, 230(3): e524-e535. doi:10.1093/infdis/jiae042.
|
[31] |
McNally E, Ross C, Gleeson LE. The tuberculous pleural effusion. Breathe(Sheff), 2023, 19(4): 230143. doi:10.1183/20734735.0143-2023.
|
[32] |
Cai Y, Wang Y, Shi C, et al. Single-cell immune profiling reveals functional diversity of T cells in tuberculous pleural effusion. J Exp Med, 2022, 219(3): e20211777. doi:10.1084/jem.20211777.
|
[33] |
Yang X, Yan J, Xue Y, et al. Single-cell profiling reveals distinct immune response landscapes in tuberculous pleural effusion and non-TPE. Front Immunol, 2023, 14: 1191357. doi:10.3389/fimmu.2023.1191357.
|
[34] |
Mo S, Shi C, Cai Y, et al. Single-cell transcriptome reveals highly complement activated microglia cells in association with pediatric tuberculous meningitis. Front Immunol, 2024, 15: 1387808. doi:10.3389/fimmu.2024.1387808.
|
[35] |
Agashe VM, Johari AN, Shah M, et al. Diagnosis of osteoarticular tuberculosis: perceptions, protocols, practices, and priorities in the endemic and non-endemic areas of the World—A WAIOT view. Microorganisms, 2020, 8(9): 1312. doi:10.3390/microorganisms8091312.
|
[36] |
Jiang Y, Zhang X, Wang B, et al. Single-cell transcriptomic analysis reveals a decrease in the frequency of macrophage-RGS1high subsets in patients with osteoarticular tuberculosis. Mol Med, 2024, 30(1): 118. doi:10.1186/s10020-024-00886-9.
pmid: 39123125
|
[37] |
Mahmoudi S, García MJ, Drain PK. Current approaches for diagnosis of subclinical pulmonary tuberculosis, clinical implications and future perspectives: a scoping review. Exp Rev Clin Immunol, 2024, 20(7): 715-726. doi:10.1080/1744666X.2024.2326032.
|
[38] |
Kendall EA, Shrestha S, Dowdy DW. The epidemiological importance of subclinical tuberculosis. A critical reappraisal. Am J Respir Crit Care Med, 2021, 203(2): 168-174. doi:10.1164/rccm.202006-2394PP.
|