[1] |
张慧, 赵雁林, 严俊. 我国结核病预防控制进展与挑战. 中国预防医学杂志, 2025, 26(1): 1-7. doi:10.16506/j.1009-6639.2025.01.001.
|
[2] |
李黎, 陶利, 钟雪梅, 等. 艾滋病与结核病共患机制研究进展. 中国当代医药, 2022, 29(30): 31-34. doi:10.3969/j.issn.1674-4721.2022.30.008.
|
[3] |
Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet, 2013, 45(7):784-790. doi:10.1038/ng.2656.
|
[4] |
Zhan L, Tang J, Sun M, et al. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol, 2017, 8:717. doi:10.3389/fmicb.2017.00717.
pmid: 28522990
|
[5] |
Gong W, Liang Y, Wu X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. Biomed Res Int, 2020, 2020: 4263079. doi:10.1155/2020/4263079.
|
[6] |
吕艳. Mtb感染BALB/c鼠B细胞亚群变化及体液免疫应答研究. 大理: 大理学院, 2014.
|
[7] |
王钰婷, 陶必林, 李忠奇, 等. 全球结核分枝杆菌谱系分布与耐药分析. 中华疾病控制杂志, 2022, 26(11): 1248-1251, 1295. doi:10.16462/j.cnki.zhjbkz.2022.11.002.
|
[8] |
Merker M, Blin C, Mona S, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet, 2015, 47 (3): 242-249. doi:10.1038/ng.3195.
|
[9] |
Stucki D, Brites D, Jeljeli L, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet, 2016, 48 (12): 1535-1543. doi:10.1038/ng.3704.
pmid: 27798628
|
[10] |
Merker M, Barbier M, Cox H, et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. Elife, 2018, 7:e38200. doi:10.7554/eLife.38200.
|
[11] |
Ates LS, Dippenaar A, Ummels R, et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol, 2018, 3 (2): 181-188. doi:10.1038/s41564-017-0090-6.
|
[12] |
Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpoLDB4) for classification, population genetics and epidemiology. BMC Microbiol, 2006, 6: 23. doi:10.1186/1471-2180-6-23.
|
[13] |
Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet, 2014, 15(5):307-320. doi:10.1038/nrg3664.
pmid: 24662221
|
[14] |
Niemann S, Merker M, Kohl T, et al. Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains. Microbiol Spectr, 2016, 4(6). doi:10.1128/microbiolspec.TBTB2-0022-2016.
|
[15] |
Chihota VN, Niehaus A, Streicher EM, et al. Geospatial distribution of Mycobacterium tuberculosis genotypes in Africa. PLoS One, 2018, 13 (8): e0200632. doi:10.1371/journal.pone.0200632.
|
[16] |
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol, 2018, 16 (4): 202-213. doi:10.1038/nrmicro.2018.8.
|
[17] |
Shuaib YA, Khalil EAG, Wieler LH, et al. Mycobacterium tuberculosis Complex Lineage 3 as Causative Agent of Pulmonary Tuberculosis, Eastern Sudan. Emerg INfect Dis, 2020, 26 (3): 427-436. doi:10.3201/eid2603.191145.
|
[18] |
Kerubo G, Ndungu P, Shuaib YA, et al. Molecular Epidemio-logy of Mycobacterium tuberculosis Complex Strains in Urban and Slum Settings of Nairobi, Kenya. Genes, 2022, 13 (3): 475. doi:10.3390/genes13030475.
|
[19] |
O’Neill MB, Shockey A, Zarley A, et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol, 2019, 28 (13): 3241-3256. doi:10.1111/mec.15120.
|
[20] |
帕里旦古丽·阿不都热合曼, 王森路, 古丽娜·巴德尔汗, 等. 喀什地区结核分枝杆菌基因型分布及其与肺结核患者临床特征的关联. 中国防痨杂志, 2024, 46(9): 1077-1082. doi:10.19982/j.issn.1000-6621.20240206.
|
[21] |
Guerra-Assunção JA, Crampin AC, Houben RM, et al. Large-scale whole genome sequencing of M.tuberculosis provides insights into transmission in a high prevalence area. Elife, 2015, 4:e05166. doi:10.7554/eLife.05166.
|
[22] |
Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet, 2018, 50 (6): 849-856. doi:10.1038/s41588-018-0117-9.
|
[23] |
Sobkowiak B, Banda L, Mzembe T, et al. Bayesian reconstruction of Mycobacterium tuberculosis transmission networks in a high incidence area over two decades in Malawi reveals associated risk factors and genomic variants. Microb Genom, 2020, 6 (4):e000361. doi:10.1099/mgen.0.000361.
|
[24] |
Dixit A, Kagal A, Ektefaie Y, et al. Modern lineages of Mycobacterium tuberculosis were recently introduced in western india and demonstrate increased transmissibility. Open Forum Infect Dis, 2021, 8(Suppl 1): S783-S784. doi:10.1093/ofid/ofab466.1589.
|
[25] |
Portevin D, Gagneux S, Comas I, et al. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog, 2011, 7 (3): e1001307. doi:10.1371/journal.ppat.1001307.
|
[26] |
Dong H, Liu Z, Lv B, et al. Spoligotypes of Mycobacterium tuberculosis from different Provinces of China. J Clin Microbiol, 2010, 48(11): 4102-4106. doi:10.1128/JCM.00549-10.
|
[27] |
Tanveer M, Hasan Z, Siddiqui AR, et al. Genotyping and drug resistance patterns of M.Tuberculosis strains in Pakistan. BMC Infect Dis, 2008, 8 (1): 171. doi:10.1186/1471-2334-8-171.
|
[28] |
Merza MA, Farnia P, Salih AM, et al. The most predominant spoligopatterns of Mycobacterium tuberculosis isolates among Iranian, Afghan-immigrant, Pakistani and Turkish tuberculosis patients: A comparative analysis. Chemotherapy, 2010, 56(3): 248-257. doi:10.1159/000316846.
|
[29] |
Bashir G, Wani T, Sharma P, et al. Predominance of Central Asian and European families among Mycobacterium tuberculosis isolates in Kashmir Valley, India. Indian J Tuberc, 2017, 64 (4): 302-308. doi:10.1016/j.ijtb.2017.05.004.
|
[30] |
Xu AM, He CJ, Cheng X, et al. Distribution and identification of Mycobacterium tuberculosis lineage in kashgar prefecture. BMC Infect Dis, 2022, 22 (1): 312. doi:10.1186/S12879-022-07307-4.
|
[31] |
Sasaninia K, Kelley M, Abnousian A, et al. Liposomal Glutathione Supplementation Mitigates Extrapulmonary Tuberculosis in the Liver and Spleen. Front Biosci(Elite Ed), 2023, 15 (3): 15. doi:10.31083/j.fbe1503015.
|
[32] |
向志光, 林树柱, 董娜, 等. 结核分枝杆菌感染小鼠的脾脏和肺脏组织荷菌量与病理变化. 中国比较医学杂志, 2011, 21(8): 66-68, 82. doi:10.3969/j.issn.1671-7856.2011.08.017.
|
[33] |
舒丽, 佘轩, 赵川. 小鼠脾脏il-35 mrna表达水平与结核分枝杆菌感染的相关性分析. 临床和实验医学杂志, 2020, 19(10): 1056-1059. doi:10.3969/j.issn.1671-4695.2020.010.014.
|
[34] |
汤红明, 刘君炎, 高立芬. IFN-γ与TNF联合治疗结核菌感染小鼠疗效及机理的研究. 免疫学杂志, 2001, 17(6): 457-459. doi:10.3969/j.issn.1000-8861.2001.06.016.
|
[35] |
Suenaga T, Okuyama T, Yoshida I, et al. Effect of Mycobacterium tuberculosis BCG infection on the resistance of mice to ectromelia virus infection: Participation of interferon in enhanced resistance. Infect Immun, 1978, 20 (1): 312-314. doi:10.1128/iai.20.1.312-314.1978.
pmid: 208973
|
[36] |
梁艳, 吴雪琼, 王兰, 等. 结核必治丸治疗小鼠结核病模型的疗效研究(英文). 中国现代医学杂志, 2009, 19(8): 1126-1129, 1138. doi:10.3969/j.issn.1005-8982.2009.08.002.
|
[37] |
Sarkar R, Lenders L, Wilkinson KA, et al. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One, 2012, 7 (8): e43170. doi:10.1371/journal.pone.0043170.
|
[38] |
Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev, 2012, 36 (3): 514-532. doi:10.1111/j.1574-6976.2012.00331.x.
pmid: 22320122
|
[39] |
Griffin JE, Pandey AK, Gilmore SA, et al. Cholesterol cata-bolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol, 2012, 19(2):218-227. doi:10.1016/j.chembiol.2011.12.016.
|
[40] |
陈龙培, 林海仁, 陈海军, 等. 活动性肺结核患者血清结核抗体IgG表达水平及临床意义. 实用中西医结合临床, 2020, 20 (12): 21-22, 24. doi:10.13638/j.issn.1671-4040.2020.12.009.
|
[41] |
王禹心, 李雅鑫, 肖俊宇. 免疫球蛋白IgM和IgA的分子机制研究进展. 中国科学(生命科学), 2025, 55 (5): 932-947. doi:10.1360/SSV-2024-0287.
|
[42] |
吕艳, 白丽, 刘文文, 等. Mtb感染balb/c鼠淋巴细胞亚群及血清抗体水平变化. 热带医学杂志, 2017, 17(5): 583-587. doi:10.3969/j.issn.1672-3619.2017.05.008.
|
[43] |
Kumagai T, Palacios A, Casadevall A, et al. Serum IgM Glycosylation Associated with Tuberculosis Infection in Mice. mSphere, 2019, 4 (2): e00684-18. doi:10.1128/mSphere.00684-18.
|
[44] |
Martinez-Garcia MA, Guan WJ, de-la-Rosa D, et al. Post-TB bronchiectasis: from pathogenesis to rehabilitation. Int J Tuberc Lung Dis, 2023, 27 (3): 175-181. doi:10.5588/IJTLD.22.0566.
pmid: 36855043
|
[45] |
Young C, Ahlers P, Hiemstra AM, et al. Performance and immune characteristics of bronchoalveolar lavage by research bronchoscopy in pulmonary tuberculosis and other lung diseases in the Western Cape, South Africa. Transl Med Commun, 2019, 4 (1): 1-12. doi:10.1186/s41231-019-0039-2.
|
[46] |
Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol, 2021, 12:775326. doi:10.3389/fimmu.2021.775326.
|
[47] |
Agarwal P, Combes TW, Shojaee-Moradie F, et al. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol, 2020, 11:1394. doi:10.3389/fmicb.2020.01394.
pmid: 32754123
|
[48] |
Zhao Y, Zhao S, Liu S, et al. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol, 2025, 146:113808. doi:10.1016/J.INTIMP.2024.113808.
|