中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (8): 1077-1084.doi: 10.19982/j.issn.1000-6621.20250091
收稿日期:
2025-03-07
出版日期:
2025-08-10
发布日期:
2025-08-01
通信作者:
龙铟,Email: longyin@fmmu.edu.cn
基金资助:
Zhu Qingyu1,2, Liu Jiayun3, Long Yin1,2()
Received:
2025-03-07
Online:
2025-08-10
Published:
2025-08-01
Contact:
Long Yin,Email: longyin@fmmu.edu.cn
Supported by:
摘要:
结核病的诊断仍然是公共卫生领域的一大难题,利用细胞外囊泡(extracellular vesicle,EV)诊断结核病是目前的研究热点。EV是纳米级膜状结构,在宿主-微生物相互作用的细胞内和细胞间通讯中至关重要,其携带的微生物特异性抗原物质对于疾病的诊断具有巨大潜力。寻找EV新型生物标志物、利用高敏感核酸技术或使用纳米材料富集结核病患者体液中EV是提高结核病诊断准确性的主要研究方向。笔者介绍了EV及其中重要生物标志物在肺结核及肺外结核方面的诊断潜力和研究进展,阐述了EV在结核病诊断中的技术瓶颈与突破方向,为跨学科研究提供理论框架。
中图分类号:
朱清玉, 刘家云, 龙铟. 细胞外囊泡与结核病诊断的研究进展[J]. 中国防痨杂志, 2025, 47(8): 1077-1084. doi: 10.19982/j.issn.1000-6621.20250091
Zhu Qingyu, Liu Jiayun, Long Yin. Advances in the application of extracellular vesicles and the diagnosis of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1077-1084. doi: 10.19982/j.issn.1000-6621.20250091
表1
外泌体非编码RNA在诊断结核病中的研究进展
研究对象 | 标本类型 | ncRNA检测 | ncRNA | 研究结果 | 参考文献 |
---|---|---|---|---|---|
结核病与健康人 | 血浆外泌体 | 高通量测序、 RT-qPCR | miR-185-5p | 在结核病患者血浆外泌体中的水平显著升高 | Kaushik 等[ |
结核病与健康人 | 血浆外泌体 | 生物信息学、 RT-qPCR | miR-26a-5p、miR-151a-3p | 结核病患者血浆外泌体来源miR-26a-5p表达水平降低,miR151a-3p表达水平升高 | 冯真等[ |
活动性结核病和健康人 | 血浆外泌体 | GEO数据集和 NONCODE数据 库的综合分析 | NONHSAT101518.2、 NONHSAT067134.2、 NONHSAT148822.1、 NONHSAT078957.2 | 4种lncRNA明显下调 | Fang等[ |
活动性结核病和健康人 | 血浆外泌体 | Small-RNA 转录组分析 | miR-766-3p、miR-1283、 miR-125a-5p、miR-376c-3p | 可能作为结核病诊断的候选标志 | Cui等[ |
结核病、LTBI与健康人 | 血清外泌体 | Small RNA-seq | hsa-let-7e-5p、hsa-let-7d-5p、 hsa-miR-450a-5p、hsa-miR-140-5p;hsa-miR-1246、hsa-miR-2110、 hsa-miR-370-3P、hsa-miR-28-3p、hsa-miR-193b-5p | 特异性表达 | Lyu等[ |
活动性结核病、LTBI与健康人 | 血清外泌体 | 高通量测序、 RT-qPCR | 3个tRFs(tRF-56:75-Trp-CCA-4、tRF-1:22-chrM.Ser-GCT、 tRF-56:76Val-TAC-1-M2) | 活动性结核病患者和LTBI中tRFs表达水平存在差异 | Xi等[ |
活动性结核病、LTBI和健康人 | 血清外泌体 | RT-qPCR | miR-27a | 表达上调 | 郑甜等[ |
LTBI与健康人 | 血浆外泌体 | Small RNA-seq | hsa-miR-7850-5p、hsa-miR-1306-5p、 hsa-miR-363-5p、hsa-miR-374a-5p、 hsa-miR-4654、has-miR-6529-5p、 hsa-miR-140-5p | 在LTBI个体中特异性表达升高 | Cui等[ |
MDR-TB与健康人 | 血清EV | qPCR | miR-let7e-5p | 在MDR-TB中观察到miR-let-7e-5p上调 | Carranza 等[ |
MDR-TB | 血浆外泌体 | RT-qPCR | miR-346 | 血浆外泌体miR-346高表达与MDR-TB治疗结果不良高风险有关,有希望作为MDR-TB治疗结局预测的有用标志物 | 胡萍等[ |
结核病、TBM和健康人 | 血浆外泌体 | 微阵列分析、 qRT-PCR | miR-20a、miR-20b、miR-26a、 miR-106a、miR-191、miR-486 | 在结核病患者中存在差异表达 | Hu等[ |
HIV感染合并结核病患者与HIV感染 | 血浆外泌体 | RT-qPCR | miR-20a、miR-20b、miR-26a、 miR-106a、miR-191、miR-486 | 表达升高 | Jin等[ |
[1] | Freitag B, Sultanli A, Grilli M, et al. Clinically diagnosed tuberculosis and mortality in high burden settings: a systematic review and meta-analysis. EClinicalMedicine, 2025, 84: 103251. doi:10.1016/j.eclinm.2025.103251. |
[2] |
Huynh J, Donovan J, Phu NH, et al. Tuberculous meningitis: progress and remaining questions. Lancet Neurol, 2022, 21(5): 450-464. doi:10.1016/S1474-4422(21)00435-X.
pmid: 35429482 |
[3] |
Liu C, Lyon CJ, Bu Y, et al. Clinical Evaluation of a Blood Assay to Diagnose Paucibacillary Tuberculosis via Bacterial Antigens. Clin Chem, 2018, 64(5): 791-800. doi:10.1373/clinchem.2017.273698.
pmid: 29348166 |
[4] |
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 2016, 36(3): 301-312. doi:10.1007/s10571-016-0366-z.
pmid: 27053351 |
[5] | Rath P, Huang C, Wang T, et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2013, 110(49): E4790-E4797. doi:10.1073/pnas.1320118110. |
[6] | White DW, Elliott SR, Odean E, et al. Pst/SenX3-RegX3 Regulates Membrane Vesicle Production Independently of ESX-5 Activity. Mbio, 2018, 9(3):e00778-18. doi:10.1128/mBio.00778-18. |
[7] | Simeone P, Bologna G, Lanuti P, et al. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci, 2020, 21(7):2514. doi:10.3390/ijms21072514. |
[8] | Skotland T, Sagini K, Sandvig K, et al. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev, 2020, 159:308-321. doi:10.1016/j.addr.2020.03.002. |
[9] | Li Y, Qian Y, Wang N, et al. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis. Biomed Pharmacother, 2023, 168: 115767. doi:10.1016/j.biopha.2023.115767. |
[10] | Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol, 2020, 11: 1230. doi:10.3389/fimmu.2020.01230. |
[11] | Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It?. Front Microbiol, 2021, 12: 638047. doi:10.3389/fmicb.2021.638047. |
[12] | Quinn CM, Kagimu E, Okirworth M, et al. Fujifilm SILVAMP TB LAM Assay on Cerebrospinal Fluid for the Detection of Tuberculous Meningitis in Adults With Human Immunodeficiency Virus. Clin Infect Dis, 2021, 73(9):e3428-e3434. doi:10.1093/cid/ciaa1910. |
[13] |
Huang Z, Huang H, Hu J, et al. A novel quantitative urine LAM antigen strip for point-of-care tuberculosis diagnosis in non-HIV adults. J Infect, 2024, 88(2): 194-198. doi:10.1016/j.jinf.2023.11.014.
pmid: 38036183 |
[14] | Lee J, Kim SH, Choi DS, et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics, 2015, 15(19): 3331-3337. doi:10.1002/pmic.201500037. |
[15] | Schirmer S, Rauh L, Alebouyeh S, et al. Immunogenicity of Mycobacterial Extracellular Vesicles Isolated From Host-Related Conditions Informs About Tuberculosis Disease Status. Front Microbiol, 2022, 13: 907296. doi:10.3389/fmicb.2022.907296. |
[16] | Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol, 2010, 8(4): 296-307. doi:10.1038/nrmicro2321. |
[17] |
Palacios A, Sampedro L, Sevilla IA, et al. Mycobacterium tuberculosis extracellular vesicle-associated lipoprotein LpqH as a potential biomarker to distinguish paratuberculosis infection or vaccination from tuberculosis infection. Bmc Vet Res, 2019, 15(1):188. doi:10.1186/s12917-019-1941-6.
pmid: 31174546 |
[18] | A J, S S S, K S, et al. Extracellular vesicles in bacterial and fungal diseases-Pathogenesis to diagnostic biomarkers. Virulence, 2023, 14(1): 2180934. doi:10.1080/21505594.2023.2180934. |
[19] | Singh PP, Li L, Schorey JS. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic, 2015, 16(6): 555-571. doi:10.1111/tra.12278. |
[20] |
Yuan Q, Chen H, Yang Y, et al. miR-18a promotes Mycobacterial survival in macrophages via inhibiting autophagy by down-regulation of ATM. J Cell Mol Med, 2020, 24(2): 2004-2012. doi:10.1111/jcmm.14899.
pmid: 31845528 |
[21] | Wang N, Yao Y, Qian Y, et al. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol, 2023, 14: 1254347. doi:10.3389/fimmu.2023.1254347. |
[22] | Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther, 2024, 9(1): 27. doi:10.1038/s41392-024-01735-1. |
[23] | Correia-Neves M, Nigou J, Mousavian Z, et al. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol, 2022, 13: 1035122. doi:10.1038/s41392-024-01735-1. |
[24] | Dahiya B, Khan A, Mor P, et al. Detection of lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR. Pathog Dis, 2019, 77(5):ftz049. doi:10.1093/femspd/ftz049. |
[25] |
Flores LL, Steingart KR, Dendukuri N, et al. Systematic Review and Meta-Analysis of Antigen Detection Tests for the Diagnosis of Tuberculosis. Clin Vaccine Immunol, 2011, 18(10): 1616-1627. doi:10.1128/Cvi.05205-11.
pmid: 21832100 |
[26] | Correia-Neves M, Fröberg G, Korshun L, et al. Biomarkers for tuberculosis: the case for lipoarabinomannan. ERJ Open Res, 2019, 5(1):00115-2018. doi:10.1183/23120541.00115-2018. |
[27] |
Peter JG, Zijenah LS, Chanda D, et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet, 2016, 387(10024): 1187-1197. doi:10.1016/S0140-6736(15)01092-2.
pmid: 26970721 |
[28] | Yari S, Afrough P, Yari F, et al. A potent subset of glycoproteins as relevant candidates for vaccine and therapeutic target. Sci Rep, 2023, 13(1):22194. doi:10.1038/s41598-023-49665-2. |
[29] | Zhang M, Xie Y, Li S, et al. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers. Front Microbiol, 2022, 12: 800807. doi:10.3389/fmicb.2021.800807. |
[30] | Kruh-Garcia NA, Wolfe LM, Chaisson LH, et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M.tuberculosis infection using MRM-MS. PLoS One, 2014, 9(7): e103811. doi:10.1371/journal.pone.0103811. |
[31] | Jiang Y, Yan L, Zhou B, et al. Identifying plasma exosome antigens as a potential diagnostic biomarker for tuberculosis disease. BMC Infect Dis, 2025, 25(1): 65. doi:10.1186/s12879-025-10474-9. |
[32] | Du Y, Xin HA, Cao XF, et al. Association Between Plasma Exosomes S100A9/C4BPA and Latent Tuberculosis Infection Treatment: Proteomic Analysis Based on a Randomized Controlled Study. Front Microbiol, 2022,13:934716. doi:10.3389/fmicb.2022.934716. |
[33] | 李伟, 吴佩佩, 钱晖, 等. 外泌体标志物及临床应用研究. 临床检验杂志, 2022, 40(12): 881-885. doi:10.13602/j.cnki.jcls.2022.12.01. |
[34] |
Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest, 2011, 121(4): 1471-1483. doi:10.1172/JCI44261.
pmid: 21364279 |
[35] | 王楠, 吴建红, 李玉洁, 等. 外泌体作为诊断结核分枝杆菌感染的标志物研究. 生命科学研究, 2024, 28(1): 33-40. doi:10.16605/j.cnki.1007-7847.2023.04.0146. |
[36] | Kaushik AC, Wu Q, Lin L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis. Brief Bioinform, 2021, 22(6):bbab210. doi:10.1093/bib/bbab210. |
[37] | 冯真, 张博, 邓思齐, 等. 血浆外泌体miR-26a-5p和miR-151a-3p在结核病中的表达及诊断价值. 安徽医科大学学报, 2022, 57(12): 1979-1984. doi:10.19405/j.cnki.issn1000-1492.2022.12.022. |
[38] | Fang Y, Zhao J, Wang X, et al. Identification of differentially expressed lncRNAs as potential plasma biomarkers for active tuberculosis. Tuberculosis, 2021, 128:102065. doi:10.1016/j.tube.2021.102065. |
[39] | Cui X, Zhang F, Meng H, et al. Transport of miR-766-3p to A549 cells by plasma-derived exosomes and its effect on intracellular survival of Mycobacterium tuberculosis by regulating NRAMP1 expression in A549 cells. Microbiol Res, 2025, 290: 127943. doi:10.1016/j.micres.2024.127943. |
[40] |
Lyu L, Zhang X, Li C, et al. Small RNA Profiles of Serum Exosomes Derived From Individuals With Latent and Active Tuberculosis. Front Microbiol, 2019, 10: 1174. doi:10.3389/fmicb.2019.01174.
pmid: 31191492 |
[41] | Xi X, Wang B, Zhang R, et al. Serum exosome tRFs as a promising biomarker for active tuberculosis and latent tuberculosis infection. J Microbiol Methods, 2024, 222: 106944. doi:10.1016/j.mimet.2024.106944. |
[42] | 郑甜, 王泉, 李树涛, 等. 血清外泌体miR-27a水平升高与肺结核耐药及不良结局的相关性. 中国热带医学, 2023, 23(8): 886-892. doi:10.13604/j.cnki.46-1064/r.2023.08.19. |
[43] | Cui X, Meng H, Li M, et al. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms, 2024, 12(7):1417. doi:10.3390/microorganisms12071417. |
[44] | Carranza C, Herrera MT, Guzman-Beltran S, et al. A Dual Marker for Monitoring MDR-TB Treatment: Host-Derived miRNAs and M.tuberculosis-Derived RNA Sequences in Serum. Front Immunol, 2021, 12: 760468. doi:10.3389/fimmu.2021.760468. |
[45] | 胡萍, 刘红艳, 高瑜, 等. 血浆外泌体miR-346与耐多药肺结核病患者治疗结果的关系. 中国热带医学, 2023, 23(10): 1082-1087,1103. doi:10.13604/j.cnki.46-1064/r.2023.10.12. |
[46] |
Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019, 40: 564-573. doi:10.1016/j.ebiom.2019.01.023.
pmid: 30745169 |
[47] | Jin Y, Liu Y, Yu W, et al. Exosomal microRNAs associated with tuberculosis among people living with human immunodeficiency virus. J Clin Tuberc Other Mycobact Dis, 2024, 36: 100453. doi:10.1016/j.jctube.2024.100453. |
[48] |
Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109.
pmid: 31697616 |
[49] | Wilmink J, Vollenberg R, Olaru ID, et al. Diagnostic Challenges in Extrapulmonary Tuberculosis: A Single-Center Expe-rience in a High-Resource Setting at a German Tertiary Care Center. Infect Dis Rep, 2025, 17(3):39. doi:10.3390/idr17030039. |
[50] | World Health Organization. High-priority target product profiles for new tuberculosis diagnostics:report of a consensus meeting 2014. Geneva: World Health Organization, 2014. |
[51] | 尹慧敏, 贾永林, 李燕飞, 等. 结核性脑膜炎患者脑脊液外泌体中let-7d表达的研究. 中国实用神经疾病杂志, 2017, 20(6): 9-12. doi:10.3969/j.issn.1673-5110.2017.06.003. |
[52] | 马战友, 高丽丽, 张俊廷, 等. 中枢神经系统感染脑脊液Caveolin-1、Let-7b、 MMP-9及IL-1β表达水平及意义. 中华医院感染学杂志, 2022, 32(18): 2781-2784. doi:10.11816/cn.ni.2022-211978. |
[53] | Dass M, Aittan S, Muthumohan R, et al. Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study. Tuberculosis (Edinb), 2022, 135: 102213. doi:10.1016/j.tube.2022.102213. |
[54] |
K Mehta P, Kamra E. Recent trends in diagnosis of urogenital tuberculosis. Future Microbiol, 2020, 15: 159-162. doi:10.2217/fmb-2019-0323.
pmid: 32043374 |
[55] | Kamra E, Prasad T, Rais A, et al. Diagnosis of genitourinary tuberculosis: detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep, 2023, 13(1): 11560. doi:10.1038/s41598-023-38740-3. |
[56] | Dahiya B, Kamra E, Alam D, et al. Insight into diagnosis of female genital tuberculosis. Expert Rev Mol Diagn, 2022, 22(6):625-642. doi:10.1080/14737159.2022.2016395. |
[57] | Paris L, Magni R, Zaidi F, et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med, 2017, 9(420):eaal2807. doi:10.1126/scitranslmed.aal2807. |
[58] |
Sun Q, Wang S, Dong W, et al. Diagnostic value of Xpert MTB/RIF Ultra for osteoarticular tuberculosis. J Infect, 2019, 79(2): 153-158. doi:10.1016/j.jinf.2019.06.006.
pmid: 31207324 |
[59] | 舒钧, 许南, 杨雪能, 等. 脊柱结核一种新分型方法的设计及可信度检验和治疗探讨. 中国脊柱脊髓杂志, 2025, 35(5): 459-469. |
[60] | Sun Z, Pang X, Wang X, et al. Differential expression analysis of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Front Microbiol, 2023, 14: 1236012. doi:10.3389/fmicb.2023.1236012. |
[61] |
Zheng W, LaCourse SM, Song B, et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat Biomed Eng, 2022, 6(8): 979-991. doi:10.1038/s41551-022-00922-1.
pmid: 35986185 |
[62] | Wang S, Zheng W, Wang R, et al. Monocrystalline Labeling Enables Stable Plasmonic Enhancement for Isolation-Free Extracellular Vesicle Analysis. Small, 2023, 19(2): e2204298. doi:10.1002/smll.202204298. |
[63] | Yudintceva N, Bobkov D, Sulatsky M, et al. Mesenchymal stem cells-derived extracellular vesicles for therapeutics of renal tuberculosis. Sci Rep, 2024, 14(1): 4495. doi:10.1038/s41598-024-54992-z. |
[64] |
Huang JY, Li H, Mei YT, et al. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomed, 2025, 20: 1285-1302. doi:10.2147/Ijn.S480288.
pmid: 39911262 |
[1] | 杜润泽, 艾尔帕提·玉素甫, 董士铭, 徐韬, 蔡晓宇, 王婷, 牙克甫·阿卜力孜, 盛伟斌, 买尔旦·买买提. Lasso-logistic回归在感染性脊柱炎鉴别诊断中的应用[J]. 中国防痨杂志, 2025, 47(S1): 1-4. |
[2] | 尹相玉, 李金星, 马刚, 刘文玉, 蔡继飞. 超声引导下胸膜活检联合Xpert MTB/RIF对结核性胸膜炎的诊断价值[J]. 中国防痨杂志, 2025, 47(S1): 5-8. |
[3] | 田琦, 李春杨. 抗病毒联合抗结核药物治疗艾滋病合并肺结核的临床疗效观察[J]. 中国防痨杂志, 2025, 47(S1): 9-11. |
[4] | 王泉, 古丽比克·木拉提, 陈清波, 张亚丽, 许苗, 杨婷, 常炜, 李媛媛, 马瑞瑛. 新疆维吾尔自治区结核分枝杆菌基因型多样性及其耐药特征研究[J]. 中国防痨杂志, 2025, 47(S1): 12-16. |
[5] | 刘敏, 祁丹, 石峰, 李兵, 郝瑞霞, 王东, 白俊. ARIMA-SVM组合模型在肺结核发病预测中的应用[J]. 中国防痨杂志, 2025, 47(S1): 21-25. |
[6] | 李雅惠, 刘珂伟, 戈启萍, 杨晓丽, 王慧芳. 四例煤工尘肺合并非结核分枝杆菌感染临床特点分析[J]. 中国防痨杂志, 2025, 47(S1): 26-30. |
[7] | 王泉, 马瑞瑛, 杨婷, 张亚丽, 古丽比克·木拉提. 新疆地区非结核分枝杆菌感染流行性及风险因素研究[J]. 中国防痨杂志, 2025, 47(S1): 31-35. |
[8] | 李春晶, 李莉, 梁雪薇, 袁嘉瑞, 林静. CT三维重建在骨结核术后效果评估中的价值研究[J]. 中国防痨杂志, 2025, 47(S1): 47-49. |
[9] | 申福国, 杨钰, 孔维丽, 石寒冰, 姜云飞, 于霁. 气管涂层支架的生物相容性及抗结核分枝杆菌性能研究[J]. 中国防痨杂志, 2025, 47(S1): 66-68. |
[10] | 刘燕, 高海恋, 孙丰珍. 淄博市第一医院非结核分枝杆菌病患者菌种分布情况研究[J]. 中国防痨杂志, 2025, 47(S1): 69-70. |
[11] | 周巍, 任鑫. 探讨多层螺旋CT在肺结核诊断和鉴别诊断中的临床应用价值[J]. 中国防痨杂志, 2025, 47(S1): 71-73. |
[12] | 卢继永. 青年女性肺结核患者抗结核治疗前后性激素水平变化规律分析[J]. 中国防痨杂志, 2025, 47(S1): 90-92. |
[13] | 杨景云, 熊媛, 雷霖涵, 赵省婷, 赵得荣, 苏艳, 徐根深, 胡加耀. 增强T2 FLAIR在儿童结核性脑膜炎中的诊断价值研究[J]. 中国防痨杂志, 2025, 47(S1): 93-95. |
[14] | 何成, 刘阳, 廖庆峰, 简佳庆, 付小刚, 简勇. 电子支气管镜下冷冻联合药物治疗肉芽增殖型支气管结核的疗效分析[J]. 中国防痨杂志, 2025, 47(S1): 134-137. |
[15] | 暴建萍. 二维高频超声对颈部淋巴结结核的诊断价值评价[J]. 中国防痨杂志, 2025, 47(S1): 141-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||