中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (10): 1171-1184.doi: 10.19982/j.issn.1000-6621.20240296
李军丽1, 郭晓楠2, 梁艳3, 何朴4, 李效池1, 赵爱华1, 都伟欣1, 吴雪琼3(), 祝秉东4(
), 徐苗1(
)
收稿日期:
2024-07-17
出版日期:
2024-10-10
发布日期:
2024-09-29
通信作者:
吴雪琼,Email:作者简介:
注:郭晓楠和李军丽对本文有同等贡献,为并列第一作者
基金资助:
Li Junli1, Guo Xiaonan2, Liang Yan3, He Pu4, Li Xiaochi1, Zhao Aihua1, Du Weixin1, Wu Xueqiong3(), Zhu Bingdong4(
), Xu Miao1(
)
Received:
2024-07-17
Online:
2024-10-10
Published:
2024-09-29
Contact:
Wu Xueqiong, Email: Supported by:
摘要:
结核病是由结核分枝杆菌(Mycobacterium tuberculosis,MTB)感染引起的严重危害人类健康的慢性传染性疾病,其中以肺结核最为多见。卡介苗(bacillus Calmette-Guérin,BCG)系目前唯一可用的预防结核病的疫苗,在全球范围内被广泛接种,其对预防婴幼儿结核病发挥重要作用,但由于远期保护力不足,且对结核分枝杆菌潜伏感染(latent tuberculosis infection,LTBI)人群不能发挥预防作用,对预防全社会MTB传播效果有限。因此,全球科学家运用多种技术手段,积极研究不同技术路径的结核病新疫苗。作者从经典疫苗BCG出发,系统梳理了目前国内外结核病新疫苗的最新研究进展,并从抗原筛选研究、创新疫苗技术平台及精准免疫思路等方面阐述了结核病疫苗研究的新突破,以期为后续开展结核病相关疫苗研究提供有价值的参考。
中图分类号:
李军丽, 郭晓楠, 梁艳, 何朴, 李效池, 赵爱华, 都伟欣, 吴雪琼, 祝秉东, 徐苗. 结核病疫苗研究进展与突破[J]. 中国防痨杂志, 2024, 46(10): 1171-1184. doi: 10.19982/j.issn.1000-6621.20240296
Li Junli, Guo Xiaonan, Liang Yan, He Pu, Li Xiaochi, Zhao Aihua, Du Weixin, Wu Xueqiong, Zhu Bingdong, Xu Miao. Research advances and breakthroughs in tuberculosis vaccine[J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1171-1184. doi: 10.19982/j.issn.1000-6621.20240296
[1] |
Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis. Indian J Tuberc, 2020, 67(3): 295-311. doi:10.1016/j.ijtb.2020.02.005.
pmid: 32825856 |
[2] | World Health Organization.Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[3] |
Abubakar I, Pimpin L, Ariti C, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess, 2013, 17(37): 1-372, v-vi. doi:10.3310/hta17370.
pmid: 24021245 |
[4] | Trial of BCG vaccines in south India for tuberculosis prevention: first report-Tuberculosis Prevention Trial. Bull World Health Organ, 1979, 57(5): 819-827. |
[5] |
Narayanan PR. Influence of sex, age & nontuberculous infection at intake on the efficacy of BCG: re-analysis of 15-year data from a double-blind randomized control trial in South India. Indian J Med Res, 2006, 123(2): 119-124.
pmid: 16575109 |
[6] | Global tuberculosis programme and global programme on vaccines. Statement on BCG revaccination for the prevention of tuberculosis. Wkly Epidemiol Rec, 1995, 70(32): 229-231. |
[7] | World Health Organization. BCG vaccine. WHO position paper. Wkly Epidemiol Rec, 2004, 79(4): 27-38. |
[8] | Mata E, Tarancon R, Guerrero C, et al. Pulmonary BCG induces lung-resident macrophage activation and confers long-term protection against tuberculosis. Sci Immunol, 2021, 6(63): eabc2934. doi:10.1126/sciimmunol.abc2934. |
[9] |
Aguilo N, Alvarez-Arguedas S, Uranga S, et al. Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17-Dependent Mechanism. J Infect Dis, 2016, 213(5): 831-839. doi:10.1093/infdis/jiv503.
pmid: 26494773 |
[10] | Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788): 95-102. doi:10.1038/s41586-019-1817-8. |
[11] | Satti I, Marshall JL, Harris SA, et al. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. Lancet Infect Dis, 2024, 24(8): 909-921. doi:10.1016/S1473-3099(24)00143-9. |
[12] | Li J, Zhan L, Qin C. The double-sided effects of Mycobacterium Bovis bacillus Calmette-Guerin vaccine. NPJ Vaccines, 2021, 6(1): 14. doi:10.1038/s41541-020-00278-0. |
[13] | Noval Rivas M, Rosser CJ, Arditi M. Rationale for Randomized Clinical Trials Investigating the Potential of BCG Vaccination in Preventing COVID-19 Infection. Bladder Cancer, 2021, 7(2):121-131. doi:10.3233/BLC-201529. |
[14] |
McShane H, Pathan AA, Sander CR, et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med, 2004, 10(11):1240-1244. doi:10.1038/nm1128.
pmid: 15502839 |
[15] | Minassian AM, Rowland R, Beveridge NE, et al. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011, 1(2): e000223. doi:10.1136/bmjopen-2011-000223. |
[16] |
Ndiaye BP, Thienemann F, Ota M, et al. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med, 2015, 3(3): 190-200. doi:10.1016/S2213-2600(15)00037-5.
pmid: 25726088 |
[17] | Sander CR, Pathan AA, Beveridge NE, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med, 2009, 179(8): 724-733. doi:10.1164/rccm.200809-1486OC. |
[18] |
Hawkridge T, Scriba TJ, Gelderbloem S, et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis, 2008, 198(4): 544-552. doi:10.1086/590185.
pmid: 18582195 |
[19] |
Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet, 2013, 381(9871): 1021-1028. doi:10.1016/S0140-6736(13)60177-4.
pmid: 23391465 |
[20] | Wilkie M, Satti I, Minhinnick A, et al. A phase I trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx 1 85A prime-MVA85A boost in healthy UK adults. Vaccine, 2020, 38(4): 779-789. doi:10.1016/j.vaccine.2019.10.102. |
[21] |
Satti I, Meyer J, Harris SA, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis, 2014, 14(10): 939-946. doi:10.1016/S1473-3099(14)70845-X.
pmid: 25151225 |
[22] | Manjaly Thomas ZR, Satti I, Marshall JL, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial. PLoS Med, 2019, 16(4): e1002790. doi:10.1371/journal.pmed.1002790. |
[23] | Darrah PA, Bolton DL, Lackner AA, et al. Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge. J Immunol, 2014, 193(4): 1799-1811. doi:10.4049/jimmunol.1400676. |
[24] | Walsh DS, Owira V, Polhemus M, et al. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON-TB Gold (+) Kenyan adults without evidence of tuberculosis. Vaccine, 2016, 34(21): 2430-2436. doi:10.1016/j.vaccine.2016.03.069. |
[25] |
Tameris M, Hokey DA, Nduba V, et al. A double-blind, randomised, placebo-controlled, dose-finding trial of the novel tuberculosis vaccine AERAS-402, an adenovirus-vectored fusion protein, in healthy, BCG-vaccinated infants. Vaccine, 2015, 33(25): 2944-2954. doi:10.1016/j.vaccine.2015.03.070.
pmid: 25936724 |
[26] | Kagina BM, Tameris MD, Geldenhuys H, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8 T cell responses. Vaccine, 2014, 32(45): 5908-5917. doi:10.1016/j.vaccine.2014.09.001. |
[27] |
Churchyard GJ, Snowden MA, Hokey D, et al. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4+ T cell counts >350 cells/mm3. Vaccine, 2015, 33(15): 1890-1896. doi:10.1016/j.vaccine.2015.02.004.
pmid: 25698492 |
[28] | Sivakumaran D, Blatner G, Bakken R, et al. A 2-Dose AERAS-402 Regimen Boosts CD8+ Polyfunctionality in HIV-Negative, BCG-Vaccinated Recipients. Front Immunol, 2021, 12: 673532. doi:10.3389/fimmu.2021.673532. |
[29] | van Zyl-Smit RN, Esmail A, Bateman ME, et al. Safety and Immunogenicity of Adenovirus 35 Tuberculosis Vaccine Candidate in Adults with Active or Previous Tuberculosis. A Randomized Trial. Am J Respir Crit Care Med, 2017, 195(9): 1171-1180. doi:10.1164/rccm.201603-0654OC. |
[30] | Smaill F, Jeyanathan M, Smieja M, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med, 2013, 5(205): 205ra134. doi:10.1126/scitranslmed.3006843. |
[31] | Buzitskaya Z, Stosman K, Khairullin B, et al. A New Intranasal Influenza Vector-Based Vaccine TB/FLU-04L Against Tuberculosis: Preclinical Safety Studies. Drug Res (Stuttg), 2022, 72(5): 255-258. doi:10.1055/a-1785-3936. |
[32] | Stosman K, Sivak K, Aleksandrov A, et al. Preclinical Safety Evaluation: Acute and Repeated-Dose Toxicity of a New Intranasal Recombinant Vector Vaccine TB/FLU-04L Against Tuberculosis. Drug Res (Stuttg), 2022, 72(4): 215-219. doi:10.1055/a-1771-5985. |
[33] | Walker KB, Guo M, Guo Y, et al. Novel approaches to preclinical research and TB vaccine development. Tuberculosis (Edinb), 2016, 99 Suppl 1: S12-15. doi:10.1016/j.tube.2016.05.012. |
[34] |
Weerasuriya CK, Clark RA, White RG, et al. New tuberculosis vaccines: advances in clinical development and modelling. J Intern Med, 2020, 288(6): 661-681. doi:10.1111/joim.13197.
pmid: 33128834 |
[35] | Gillard P, Yang PC, Danilovits M, et al. Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: A phase Ⅱ randomised study. Tuberculosis (Edinb), 2016, 100: 118-127. doi:10.1016/j.tube.2016.07.005. |
[36] | Idoko OT, Owolabi OA, Owiafe PK, et al. Safety and immunogenicity of the M72/AS 01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis (Edinb), 2014, 94(6): 564-578. doi:10.1016/j.tube.2014.07.001. |
[37] | Kumarasamy N, Poongulali S, Bollaerts A, et al. A Randomi-zed, Controlled Safety, and Immunogenicity Trial of the M72/AS01 Candidate Tuberculosis Vaccine in HIV-Positive Indian Adults. Medicine (Baltimore), 2016, 95(3): e2459. doi:10.1097/MD.0000000000002459. |
[38] | Ji Z, Jian M, Chen T, et al. Immunogenicity and Safety of the M72/AS01(E) Candidate Vaccine Against Tuberculosis: A Meta-Analysis. Front Immunol, 2019, 10: 2089. doi:10.3389/fimmu.2019.02089. |
[39] | Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018, 379(17): 1621-1634. doi:10.1056/NEJMoa1803484. |
[40] | Tait DR, Hatherill M, Van Der Meeren O, et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019, 381(25): 2429-2439. doi:10.1056/NEJMoa1909953. |
[41] | Tait DR, Van Der Meeren O, Hatherill M. A Trial of M72/AS01E Vaccine to Prevent Tuberculosis. Reply. N Engl J Med, 2020, 382(16): 1577. doi:10.1056/NEJMc2001364. |
[42] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[43] | Tkachuk AP, Gushchin VA, Potapov VD, et al. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One, 2017, 12(4): e0176784. doi:10.1371/journal.pone.0176784. |
[44] | Vasina DV, Kleymenov DA, Manuylov VA, et al. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines (Basel), 2019, 7(4): 166. doi:10.3390/vaccines7040166. |
[45] | Tkachuk AP, Bykonia EN, Popova LI, et al. Safety and Immunogenicity of the GamTBvac, the Recombinant Subunit Tuberculosis Vaccine Candidate: A Phase Ⅱ, Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study. Vaccines (Basel), 2020, 8(4): 652. doi:10.3390/vaccines8040652. |
[46] |
Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011, 17(2): 189-194. doi:10.1038/nm.2285.
pmid: 21258338 |
[47] | Lin PL, Dietrich J, Tan E, et al. The multistage vaccine H 56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest, 2012, 122(1): 303-314. doi:10.1172/JCI46252. |
[48] | Billeskov R, Lindenstrøm T, Woodworth J, et al. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis. Front Immunol, 2018, 8: 1973. doi:10.3389/fimmu.2017.01973. |
[49] | Hoang T, Aagaard C, Dietrich J, et al. ESAT-6 (EsxA) and TB10.4 (EsxH) based vaccines for pre- and post-exposure tuberculosis vaccination. PLoS One, 2013, 8(12): e80579. doi:10.1371/journal.pone.0080579. |
[50] |
Perez-Martinez AP, Ong E, Zhang L, et al. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa. Infect Genet Evol, 2017, 55: 244-250. doi:10.1016/j.meegid.2017.09.023.
pmid: 28941991 |
[51] | Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose Optimization of H56:IC 31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am J Respir Crit Care Med, 2019, 199(2): 220-231. doi:10.1164/rccm.201802-0366OC. |
[52] | Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC 31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33): 4130-4140. doi:10.1016/j.vaccine.2015.06.051. |
[53] | Jenum S, Tonby K, Rueegg CS, et al. A Phase Ⅰ/Ⅱ randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients. Nat Commun, 2021, 12(1): 6774. doi:10.1038/s41467-021-27029-6. |
[54] | Bekker LG, Dintwe O, Fiore-Gartland A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine, 2020, 21: 100313. doi:10.1016/j.eclinm.2020.100313. |
[55] | Orr MT, Beebe EA, Hudson TE, et al. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS One, 2014, 9(1): e83884. doi:10.1371/journal.pone.0083884. |
[56] | Duthie MS, Coler RN, Laurance JD, et al. Protection against Mycobacterium leprae infection by the ID83/GLA-SE and ID93/GLA-SE vaccines developed for tuberculosis. Infect Immun, 2014, 82(9): 3979-3985. doi:10.1128/IAI.02145-14. |
[57] |
Baldwin SL, Bertholet S, Reese VA, et al. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol, 2012, 188(5): 2189-2197. doi:10.4049/jimmunol.1102696.
pmid: 22291184 |
[58] | Bertholet S, Ireton GC, Ordway DJ, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010, 2(53): 53ra74. doi:10.1126/scitranslmed.3001094. |
[59] | Baldwin SL, Reese VA, Huang PW, et al. Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Clin Vaccine Immunol, 2015, 23(2): 137-147. doi:10.1128/CVI.00458-15. |
[60] | Day TA, Penn-Nicholson A, Luabeya AKK, et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93+GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir Med, 2021, 9(4): 373-386. doi:10.1016/S2213-2600(20)30319-2. |
[61] |
Dijkman K, Lindenstrøm T, Rosenkrands I, et al. A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG. NPJ Vaccines, 2023, 8(1): 66. doi:10.1038/s41541-023-00666-2.
pmid: 37160970 |
[62] | Spertini F, Audran R, Chakour R, et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med, 2015, 3(12): 953-962. doi:10.1016/S2213-2600(15)00435-X. |
[63] |
Kaufmann SHE. Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Front Immunol, 2020, 11: 316. doi:10.3389/fimmu.2020.00316.
pmid: 32174919 |
[64] |
Nieuwenhuizen NE, Kulkarni PS, Shaligram U, et al. The Recombinant Bacille Calmette-Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front Immunol, 2017, 8:1147. doi:10.3389/fimmu.2017.01147.
pmid: 28974949 |
[65] | Cotton MF, Madhi SA, Luabeya AK, et al. Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: a randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infect Dis, 2022, 22(10): 1472-1483. doi:10.1016/S1473-3099(22)00222-5. |
[66] | Arbues A, Aguilo JI, Gonzalo-Asensio J, et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M.tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31(42): 4867-4873. doi:10.1016/j.vaccine.2013.07.051. |
[67] | Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One, 2008, 3(10): e3496. doi:10.1371/journal.pone.0003496. |
[68] | Gonzalo-Asensio J, Malaga W, Pawlik A, et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A, 2014, 111(31): 11491-11496. doi:10.1073/pnas.1406693111. |
[69] |
Gonzalo-Asensio J, Marinova D, Martin C, et al. MTBVAC: Attenuating the Human Pathogen of Tuberculosis (TB) Toward a Promising Vaccine against the TB Epidemic. Front Immunol, 2017, 8: 1803. doi:10.3389/fimmu.2017.01803.
pmid: 29326700 |
[70] | Tameris M, Mearns H, Penn-Nicholson A, et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med, 2019, 7(9): 757-770. doi:10.1016/S2213-2600(19)30251-6. |
[71] | Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb), 2006, 86(3/4): 273-289. doi:10.1016/j.tube.2006.01.024. |
[72] | Cardona PJ. The Progress of Therapeutic Vaccination with Regard to Tuberculosis. Front Microbiol, 2016, 7: 1536. doi:10.3389/fmicb.2016.01536. |
[73] |
Guirado E, Gil O, Cáceres N, et al. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis. Clin Vaccine Immunol, 2008, 15(8):1229-1237. doi:10.1128/CVI.00094-08.
pmid: 18524883 |
[74] |
Prabowo SA, Painter H, Zelmer A, et al. RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Front Immunol, 2019, 10: 894. doi:10.3389/fimmu.2019.00894.
pmid: 31114572 |
[75] |
Vilaplana C, Montané E, Pinto S, et al. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4): 1106-1116. doi:10.1016/j.vaccine.2009.09.134.
pmid: 19853680 |
[76] | Nell AS, D’lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase Ⅱ clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9(2): e89612. doi:10.1371/journal.pone.0089612. |
[77] | Masonou T, Hokey DA, Lahey T, et al. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: A randomized, placebo-controlled trial. PLoS One, 2019, 14(5): e0217091. doi:10.1371/journal.pone.0217091. |
[78] | Lahey T, Laddy D, Hill K, et al. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis. PLoS One, 2016, 11(12): e0168521. doi:10.1371/journal.pone.0168521. |
[79] | von Reyn CF, Lahey T, Arbeit RD, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901. PLoS One, 2017, 12(5): e0175215. doi:10.1371/journal.pone.0175215. |
[80] | Munseri P, Said J, Amour M, et al. DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial. Vaccine, 2020, 38(46): 7239-7245. doi:10.1016/j.vaccine.2020.09.055. |
[81] | Lahey T, Arbeit RD, Bakari M, et al. Immunogenicity of a protective whole cell mycobacterial vaccine in HIV-infected adults: a phase Ⅲ study in Tanzania. Vaccine, 2010, 28(48): 7652-7658. doi:10.1016/j.vaccine.2010.09.041. |
[82] |
von Reyn CF, Mtei L, Arbeit RD, et al. Prevention of tuberculosis in Bacille Calmette-Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24(5): 675-685. doi:10.1097/QAD.0b013e3283350f1b.
pmid: 20118767 |
[83] | Sharma P, Mukherjee R, Talwar GP, et al. Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8-10 years. Lepr Rev, 2005, 76(2): 127-143. |
[84] | Sharma P, Misra RS, Kar HK, et al. Mycobacterium w vaccine, a useful adjuvant to multidrug therapy in multibacillary leprosy: a report on hospital based immunotherapeutic clinical trials with a follow-up of 1-7 years after treatment. Lepr Rev, 2000, 71(2): 179-192. doi:10.5935/0305-7518.20000020. |
[85] | Sharma SK, Katoch K, Sarin R, et al. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category Ⅱ pulmonary tuberculosis in a randomized trial. Sci Rep, 2017, 7(1): 3354. doi:10.1038/s41598-017-03514-1. |
[86] | Mayosi BM, Ntsekhe M, Bosch J, et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med, 2014, 371(12): 1121-1130. doi:10.1056/NEJMoa1407380. |
[87] |
Schlake T, Thess A, Fotin-Mleczek M, et al. Developing mRNA-vaccine technologies. RNA Biol, 2012, 9(11):1319-1330. doi:10.4161/rna.22269.
pmid: 23064118 |
[88] | Larsen SE, Erasmus JH, Reese VA, et al. An RNA-Based Vaccine Platform for Use against Mycobacterium tuberculosis. Vaccines (Basel), 2023, 11(1): 130. doi:10.3390/vaccines11010130. |
[89] | Chahal JS, Fang T, Woodham AW, et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep, 2017, 7(1):252. doi:10.1038/s41598-017-00193-w. |
[90] | Xue T, Stavropoulos E, Yang M, et al. RNA encoding the MPT 83 antigen induces protective immune responses against Mycobacterium tuberculosis infection. Infect Immun, 2004, 72(11): 6324-6329. doi:10.1128/IAI.72.11.6324-6329.2004. |
[91] | Hu Z, Wong KW, Zhao HM, et al. Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD 8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice. Mol Ther, 2017, 25(5): 1222-1233. doi:10.1016/j.ymthe.2017.02.018. |
[92] |
Hu Z, Gu L, Li CL, et al. The Profile of T Cell Responses in Bacille Calmette-Guérin-Primed Mice Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine. Front Immunol, 2018, 9: 1796. doi:10.3389/fimmu.2018.01796.
pmid: 30123219 |
[93] | Lu JB, Chen BW, Wang GZ, et al. Recombinant tuberculosis vaccine AEC/BC 02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection. J Microbiol Immunol Infect, 2015, 48(6): 597-603. doi:10.1016/j.jmii.2014.03.005. |
[94] | 卢锦标, 赵爱华, 王国治, 等. 结核病新疫苗临床研究进展. 中华结核和呼吸杂志, 2019, 42(10): 783-790. doi:10.3760/cma.j.issn.1001-0939.2019.10.015. |
[95] | Niu H, Peng J, Bai C, et al. Multi-Stage Tuberculosis Subunit Vaccine Candidate LT 69 Provides High Protection against Mycobacterium tuberculosis Infection in Mice. PLoS One, 2015, 10(6): e0130641. doi:10.1371/journal.pone.0130641. |
[96] | Niu H, Hu L, Li Q, et al. Construction and evaluation of a multistage Mycobacterium tuberculosis subunit vaccine candidate Mtb10.4-HspX. Vaccine, 2011, 29(51): 9451-9458. doi:10.1016/j.vaccine.2011.10.032. |
[97] | 余大海, 蔡宏, 朱玉贤. 佐剂DDA和MPL对提高结核杆菌组合DNA疫苗免疫效果的比较研究. 生物化学与生物物理进展, 2005, 32(8): 765-770. doi:10.3321/j.issn:1000-3282.2005.08.012. |
[98] |
Li F, Kang H, Li J, et al. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection. Scand J Immunol, 2017, 85(6): 425-432. doi:10.1111/sji.12556.
pmid: 28426145 |
[99] | Liu X, Peng J, Hu L, et al. A multistage mycobacterium tuberculosis subunit vaccine LT 70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother, 2016, 12(7): 1670-1677. doi:10.1080/21645515.2016.1141159. |
[100] | Liu X, Da Z, Wang Y, et al. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine, 2016, 34(11): 1370-1378. doi:10.1016/j.vaccine.2016.01.049. |
[101] | Wang Jl, Qie Yq, Zhu Bd, et al. Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice. Med Microbiol Immunol, 2009, 198(1): 5-11. doi:10.1007/s00430-008-0098-x. |
[102] | Wang J, Qie Y, Liu W, et al. Protective efficacy of a recombinant BCG secreting antigen 85B/Rv3425 fusion protein against Mycobacterium tuberculosis infection in mice. Hum Vaccin Immunother, 2012, 8(12): 1869-1874. doi:10.4161/hv.21817. |
[103] | Yang E, Gu J, Wang F, et al. Recombinant BCG prime and PPE protein boost provides potent protection against acute Mycobacterium tuberculosis infection in mice. Microb Pathog, 2016, 93: 1-7. doi:10.1016/j.micpath.2016.01.006. |
[104] | Wu Y, Tian M, Zhang Y, et al. Deletion of BCG_2432c from the Bacillus Calmette-Guérin vaccine enhances autophagy-mediated immunity against tuberculosis. Allergy, 2022, 77(2): 619-632. doi:10.1111/all.15158. |
[105] | Ning H, Wang L, Zhou J, et al. Recombinant BCG With Bacterial Signaling Molecule Cyclic di-AMP as Endogenous Adjuvant Induces Elevated Immune Responses After Mycobacterium tuberculosis Infection. Front Immunol, 2019, 10: 1519. doi:10.3389/fimmu.2019.01519. |
[106] |
Chiwala G, Liu Z, Mugweru JN, et al. A recombinant selective drug-resistant M.bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen. Biomed Pharmacother, 2021, 142: 112047. doi:10.1016/j.biopha.2021.112047.
pmid: 34426260 |
[107] | 卢水华, 席秀红, 熊延青. 生物制剂在结核病免疫治疗中的应用. 医药导报, 2010, 29(3): 275-278. doi:10.3870/yydb.2010.03.001. |
[108] | 陈珣珣, 周琳, 陈志宇, 等. 微卡辅助治疗初治涂阴肺结核的超短程方案疗效评价. 广东医学, 2019, 40(10): 1386-1390. doi:10.13820/j.cnki.gdyx.20185978. |
[109] | 卢锦标, 王国治. 我国结核病疫苗和诊断制剂概述. 中华结核和呼吸杂志, 2014, 37(6): 461-463. doi:10.3760/cma.j.issn.1001-0939.2014.06.022. |
[110] | Liu L, Zhang WJ, Zheng J, et al. Exploration of novel cellular and serological antigen biomarkers in the ORFeome of Mycobacterium tuberculosis. Mol Cell Proteomics, 2014, 13(3): 897-906. doi:10.1074/mcp.M113.032623. |
[111] | Deng J, Bi L, Zhou L, et al. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep, 2014, 9(6): 2317-2329. doi:10.1016/j.celrep.2014.11.023. |
[112] | Wang Y, Li Z, Wu S, et al. Systematic Evaluation of Mycobacterium tuberculosis Proteins for Antigenic Properties Identifies Rv1485 and Rv1705c as Potential Protective Subunit Vaccine Candidates. Infect Immun, 2021, 89(3): e00585-20. doi:10.1128/IAI.00585-20. |
[113] | 夏敏, 杨晓岚, 杨鹏辉, 等. 结核分枝杆菌Ag85B-mRNA疫苗的体外合成及其免疫原性研究. 免疫学杂志, 2019, 35(5): 404-408. doi:10.13431/j.cnki.immunol.j.20190061. |
[114] | Liang Y, Cui L, Xiao L, et al. Immunotherapeutic Effects of Different Doses of Mycobacterium tuberculosis ag85a/b DNA Vaccine Delivered by Electroporation. Front Immunol, 2022, 13: 876579. doi:10.3389/fimmu.2022.876579. |
[115] | Li J, Fu L, Wang G, et al. Unmethylated CpG motif-containing genomic DNA fragment of Bacillus calmette-guerin promotes macrophage functions through TLR9-mediated activation of NF-κB and MAPKs signaling pathways. Innate Immun, 2020, 26(3): 183-203. doi:10.1177/1753425919879997. |
[116] | 赵爱华, 乔来艳, 贾淑珍, 等. BCG-CpG-DNA对重组HBsAg的免疫佐剂作用. 中国生物制品学杂志, 2007, 20(5): 356-358, 361. doi:10.3969/j.issn.1004-5503.2007.05.012. |
[117] | 赵爱华, 李凤祥, 贾淑珍, 等. BCG-CpG-DNA对A群脑膜炎球菌多糖疫苗的免疫佐剂作用. 中国医药生物技术, 2010, 5(2): 94-97. doi:10.3969/cmba.j.issn.1673-713X.2010.02.003. |
[118] | Chen L, Xu M, Wang ZY, et al. The development and preliminary evaluation of a new Mycobacterium tuberculosis vaccine comprising Ag85b, HspX and CFP-10:ESAT-6 fusion protein with CpG DNA and aluminum hydroxide adjuvants. FEMS Immunol Med Microbiol, 2010, 59(1): 42-52. doi:10.1111/j.1574-695X.2010.00660.x. |
[119] | 张影, 杨英超, 张瑾, 等. STAg与BCG-DNA和氢氧化铝佐剂联合免疫小鼠的免疫效果. 中国生物制品学杂志, 2011, 24(10):1177-1179. doi:10.13200/j.cjb.2011.10.62.zhangy.021. |
[120] | 李军丽, 付丽丽, 杨阳, 等. 新型生物佐剂BC01对机体免疫激活作用的初步分析. 中国生物制品学杂志, 2022, 35(8): 928-936, 942. doi:10.13200/j.cnki.cjb.003685. |
[121] |
Zhou Z, Zhang X, Li Q, et al. Unmethylated CpG motif-containing genomic DNA fragments of bacillus calmette-guerin improves immune response towards a DNA vaccine for COVID-19. Vaccine, 2021, 39(41): 6050-6056. doi:10.1016/j.vaccine.2021.08.103.
pmid: 34521552 |
[122] | 卢锦标, 付丽丽, 邓海清, 等. 重组结核疫苗AEC/BC02诱导豚鼠的Ⅰ型超敏反应. 中国生物制品学杂志, 2014, 27(3): 289-291, 295. doi:10.13200/j.cnki.cjb.000197. |
[123] | 卢锦标, 陈保文, 邓海清, 等. 结核分枝杆菌感染豚鼠接种重组结核疫苗 AEC/BC02后的超敏反应分析. 中华结核和呼吸杂志, 2016, 39(7): 524-528. doi:10.3760/cma.j.issn.1001-0939.2016.07.007. |
[124] | 卢锦标, 杨蕾, 苏城, 等. 重组AEC/BC02疫苗联合化疗在豚鼠模型中的抗结核效果. 中华微生物学和免疫学杂志, 2018, 38 (6): 414-419. doi:10.3760/cma.j.issn.0254-5101.2018.06.003. |
[125] | Lu J, Guo X, Wang C, et al. Therapeutic Effect of Subunit Vaccine AEC/BC 02 on Mycobacterium tuberculosis Post-Chemo-therapy Relapse Using a Latent Infection Murine Model. Vaccines (Basel), 2022, 10(5): 825. doi:10.3390/vaccines10050825. |
[126] | 李军丽, 付丽丽, 王国治, 等. BC02复合佐剂成分协同增强巨噬细胞固有免疫应答的分析. 中国生物制品学杂志, 2018, 31(9): 941-948. doi:10.13200/j.cnki.cjb.002274. |
[127] | 李军丽, 付丽丽, 杨阳, 等. BC02复合佐剂成分协同增强机体固有免疫应答的分析. 中国生物制品学杂志, 2022, 35(1): 11-18. doi:10.13200/j.cnki.cjb.003513. |
[128] | Li J, Fu L, Yang Y, et al. Enhanced Potency and Persistence of Immunity to Varicella-Zoster Virus Glycoprotein E in Mice by Addition of a Novel BC 02 Compound Adjuvant. Vaccines (Basel), 2022, 10(4): 529. doi:10.3390/vaccines10040529. |
[1] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[2] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[3] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[4] | 张超, 于霞, 黄海荣, 刘伟, 刘涛. 七氟烷对结核分枝杆菌体外抑菌效果的评价[J]. 中国防痨杂志, 2025, 47(2): 158-163. |
[5] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[6] | 邱勇, 权卓, 屈榕, 田发君, 李蒙, 王更生, 王娅, 郭明成, 高谦. 县级实验室结核病检测方法的诊断效果分析: 一项基于真实世界数据的回顾性研究[J]. 中国防痨杂志, 2025, 47(2): 181-188. |
[7] | 舒薇, 刘宇红. 矢志革新 履践致远:《2024年全球结核病报告》结核病科学研究章节解读[J]. 中国防痨杂志, 2025, 47(2): 137-141. |
[8] | 闫晓婧, 王宇津, 王隽, 荆玮, 李雪莲, 程洁, 杨国立, 王玉清, 初乃惠, 聂文娟, 矫晓克. 纳米孔测序技术对涂阴肺结核患者诊断价值的多中心临床研究[J]. 中国防痨杂志, 2025, 47(2): 169-174. |
[9] | 徐良润, 杨明莹, 郭映武, 王赟, 徐晶晶, 侯菊艳, 马云红. 健康信念模式下家属协同护理模式在初治涂阳肺结核患者自我管理中的应用效果[J]. 中国防痨杂志, 2025, 47(2): 210-217. |
[10] | 梁麟龙, 裴异, 周海依, 谢齐放, 张锋, 江杰, 刘富强. 2014—2023年湖南省0~14岁儿童肺结核流行特征及变化趋势[J]. 中国防痨杂志, 2025, 47(1): 29-35. |
[11] | 陈纪飞, 黄丽花, 罗兰波, 眭文娴, 逄宇, 刘爱梅. 舌拭子-PCR荧光探针法对肺结核诊断效能的评价[J]. 中国防痨杂志, 2025, 47(1): 51-60. |
[12] | 张丽帆, 陈艳, 张月秋, 张奉春, 曾小峰, 赵岩, 刘升云, 左晓霞, 张志毅, 吴华香, 陈盛, 李鸿斌, 朱平, 武丽君, 齐文成, 刘毅, 张缪佳, 刘花香, 周宝桐, 侍效春, 阮桂仁, 刘晓清, 中国风湿免疫病人群活动性结核病的流行病学调查和治疗效果及预后研究课题组. 中国风湿免疫病患者活动性结核病患病情况多中心横断面研究:亚组分析[J]. 中国防痨杂志, 2025, 47(1): 22-28. |
[13] | 李雪秋, 刘群, 唐科, 吴迪. 2011—2020年广州市肺结核死亡趋势及年龄-时期-队列模型分析[J]. 中国防痨杂志, 2025, 47(1): 44-50. |
[14] | 胡婷. 超声检查在结核性胸腔积液诊断中的应用价值[J]. 中国防痨杂志, 2024, 46(S2): 55-57. |
[15] | 毛牵弟. 基于微信平台的延续性护理对艾滋病肺部感染患者自我护理能力和睡眠质量的影响[J]. 中国防痨杂志, 2024, 46(S2): 341-344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||