[1] |
Yang H, Sha W, Liu Z, et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect, 2018, 7(1): 34. doi:10.1038/s41426-018-0032-2.
|
[2] |
张蓝月, 耿艺漫, 贾红彦, 等. 耻垢分枝杆菌新型毒素-抗毒素系统MSMEG_3435-3436基因功能的初步研究. 中国防痨杂志, 2020, 42(2): 133-142. doi:10.3969/j.issn.1000-6621.2020.02.010.
|
[3] |
Li B, He S, Tan Z, et al. Impaired ESX-3 Induces Bedaquiline Persistence in Mycobacterium abscessus Growing Under Iron-Limited Conditions. Small Methods, 2023, 7(9):e2300183. doi:10.1002/smtd.202300183.
|
[4] |
Bei C, Zhu J, Culviner PH, et al. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis. Nat Commun, 2024, 15(1): 3088. doi:10.1038/s41467-024-47410-5.
|
[5] |
张蓝月, 朱传智, 潘丽萍, 等. 结核分枝杆菌乙酰转移酶功能研究进展. 中华结核和呼吸杂志, 2023, 46(11): 1141-1146. doi:10.3760/cma.j.cn112147-20230725-00028.
|
[6] |
Yang H, Wang F, Guo X, et al. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov, 2021, 7(1): 90. doi:10.1038/s41421-021-00301-1.
pmid: 34608123
|
[7] |
段玉衡, 张蓝月, 董静, 等. 结核分枝杆菌乙酰转移酶fadA3对宿主蛋白乙酰化修饰及其体内存活影响的研究. 中国防痨杂志, 2023, 45(4): 391-400. doi:10.19982/j.issn.1000-6621.20220525.
|
[8] |
Xie L, Yang W, Fan X, et al. Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep, 2019, 39(12): BSR20191661. doi:10.1042/bsr20191661.
|
[9] |
Vetting MW, Roderick SL, Yu M, et al. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci, 2003, 12(9): 1954-1959. doi:10.1110/ps.03153703.
|
[10] |
葛文雪, 陈润, 白嘉诚, 等. 结核分枝杆菌硫醇乙酰基转移酶基因敲除株的构建及其生物学特性分析. 微生物与感染, 2019, 14(5): 282-288. doi:10.3969/j.issn.1673-6184.2019.05.004.
|
[11] |
Yan MY, Zheng D, Li SS, et al. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. Sci Adv, 2022, 8(47): eadd5907. doi:10.1126/sciadv.add5907.
|
[12] |
Goude R, Roberts DM, Parish T. Electroporation of mycobacteria. Methods Mol Biol, 2015, 1285: 117-130. doi:10.1007/978-1-4939-2450-9_7.
pmid: 25779313
|
[13] |
Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio, 2020, 11(1): e02364-19. doi:10.1128/mBio.02364-19.
|
[14] |
Vilchèze C, Av-Gay Y, Attarian R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol, 2008, 69(5): 1316-1329. doi:10.1111/j.1365-2958.2008.06365.x.
|
[15] |
Sao Emani C, Gallant JL, Wiid IJ, et al. The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinburgh), 2019, 116: 44-55. doi:10.1016/j.tube.2019.04.003.
|
[16] |
Saini V, Cumming BM, Guidry L, et al. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Rep, 2016, 14(3): 572-585. doi:10.1016/j.celrep.2015.12.056.
|
[17] |
Kunota TTR, Rahman MA, Truebody BE, et al. Mycobacterium tuberculosis H2S Functions as a Sink to Modulate Central Metabolism, Bioenergetics, and Drug Susceptibility. Antioxidants (Basel), 2021, 10(8):1285. doi:10.3390/antiox10081285.
|
[18] |
Jayasinghe YP, Banco MT, Lindenberger JJ, et al. The Mycobacterium tuberculosis mycothiol S-transferase is divalent metal-dependent for mycothiol binding and transfer. RSC Med Chem, 2023, 14(3): 491-500. doi:10.1039/d2md00401a.
|
[19] |
Shee S, Singh S, Tripathi A, et al. Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species. Antimicrob Agents Chemother, 2022, 66(9): e0059222. doi:10.1128/aac.00592-22.
|
[20] |
Hong Y, Zeng J, Wang X, et al. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci U S A, 2019, 116(20): 10064-10071. doi:10.1073/pnas.1901730116.
|
[21] |
Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol, 2001, 183(24): 7182-7189. doi:10.1128/jb.183.24.7182-7189.2001.
pmid: 11717277
|
[22] |
Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol, 2003, 48(1): 77-84. doi:10.1046/j.1365-2958.2003.03425.x.
pmid: 12657046
|
[23] |
Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A, 2005, 102(23): 8327-8332. doi:10.1073/pnas.0503272102.
|