[1] |
Chatterjee D. The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol, 1997, 1(4): 579-588. doi:10.1016/s1367-5931(97)80055-5.
pmid: 9667898
|
[2] |
孙丕梅. 结核分枝杆菌中的分枝菌酸. 中国防痨杂志, 2010, 32(7): 44-49.
|
[3] |
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity-fighting with a double-edged sword. FEBS Letters, 2016, 590(21): 3800-3819. doi:10.1002/1873-3468.12273.
pmid: 27350117
|
[4] |
Sander P, Rezwan M, Walker B, et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol, 2004, 52(6): 1543-1552. doi:10.1111/j.1365-2958.2004.04041.x.
pmid: 15186407
|
[5] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685): 537-544. doi:10.1038/31159.
|
[6] |
Post FA, Manca C, Neyrolles O, et al. Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro. Infect Immun, 2001, 69(3): 1433-1439. doi:10.1128/iai.69.3.1433-1439.2001.
pmid: 11179309
|
[7] |
Fulton SA, Reba SM, Pai RK, et al. Inhibition of major histocompatibility complex Ⅱ expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein. Infect Immun, 2004, 72(4): 2101-2110. doi:10.1128/iai.72.4.2101-2110.2004.
pmid: 15039332
|
[8] |
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008, 105(11): 4376-4380. doi:10.1073/pnas.0711159105.
|
[9] |
Miner MD, Chang JC, Pandey AK, et al. Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol, 2009, 47(6): 407-411.
|
[10] |
Sulzenbacher G, Canaan S, Bordat Y, et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocero-sates to the surface of Mycobacterium tuberculosis. EMBO J, 2006, 25(7): 1436-1444. doi:10.1038/sj.emboj.7601048.
pmid: 16541102
|
[11] |
Bigi F, Gioffré A, Klepp L, et al. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect, 2004, 6(2): 182-187. doi:10.1016/j.micinf.2003.10.010.
|
[12] |
Bigi F, Espitia C, Alito A, et al. A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology (Reading), 1997, 143 (Pt 11): 3599-3605. doi:10.1099/00221287-143-11-3599.
|
[13] |
Gaur RL, Ren K, Blumenthal A, et al. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog, 2014, 10(9): e1004376. doi:10.1371/journal.ppat.1004376.
|
[14] |
Shukla S, Richardson ET, Athman JJ, et al. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog, 2014, 10(10): e1004471. doi:10.1371/journal.ppat.1004471.
|
[15] |
Drage MG, Tsai HC, Pecora ND, et al. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol, 2010, 17(9): 1088-1095. doi:10.1038/nsmb.1869.
|
[16] |
Martinot AJ, Farrow M, Bai L, et al. Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathog, 2016, 12(1): e1005351. doi:10.1371/journal.ppat.1005351.
|
[17] |
Li J, Luu LDW, Wang X, et al. Metabolomic analysis reveals potential biomarkers and the underlying pathogenesis involved in Mycoplasma pneumoniae pneumonia. Emerg Microbes Infect, 2022, 11(1): 593-605. doi:10.1080/22221751.2022.2036582.
|
[18] |
Zhai W, Wu F, Zhang Y, et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 2019, 20(2): 340. doi:10.3390/ijms20020340.
|
[19] |
Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol, 2020, 11: 1230. doi:10.3389/fimmu.2020.01230.
|
[20] |
Kang PB, Azad AK, Torrelles JB, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med, 2005, 202(7): 987-999. doi:10.1084/jem.20051239.
|
[21] |
Quigley J, Hughitt VK, Velikovsky CA, et al. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio, 2017, 8(2): e00148-17. doi:10.1128/mBio.00148-17.
|
[22] |
Gago G, Diacovich L, Gramajo H. Lipid metabolism and its implication in mycobacteria-host interaction. Curr Opin Microbiol, 2018, 41: 36-42. doi:10.1016/j.mib.2017.11.020.
pmid: 29190491
|
[23] |
Neyrolles O, Guilhot C. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb), 2011, 91(3): 187-195. doi:10.1016/j.tube.2011.01.002.
|
[24] |
Cook GM, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development. Adv Microb Physiol, 2014, 65: 1-62. doi:10.1016/bs.ampbs.2014.08.001.
pmid: 25476763
|
[25] |
Daniel J, Maamar H, Deb C, et al. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog, 2011, 7(6): e1002093. doi:10.1371/journal.ppat.1002093.
|
[26] |
Lee W, VanderVen BC, Fahey RJ, et al. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem, 2013, 288(10): 6788-6800. doi:10.1074/jbc.M112.445056.
|
[27] |
Agarwal P, Gordon S, Martinez FO. Foam Cell Macrophages in Tuberculosis. Front Immunol, 2021, 12: 775326. doi:10.3389/fimmu.2021.775326.
|
[28] |
Trivedi OA, Arora P, Sridharan V, et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 2004, 428(6981): 441-445. doi:10.1038/nature02384.
|
[29] |
Baran M, Grimes KD, Sibbald PA, et al. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis. J Med Chem, 2020, 201: 112408. doi:10.1016/j.ejmech.2020.112408.
|
[30] |
Pitarque S, Larrouy-Maumus G, Payré B, et al. The immunomodulatory lipoglycans, lipoar-abinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb), 2008, 88(6): 560-565. doi:10.1016/j.tube.2008.04.002.
|
[31] |
Fischer K, Chatterjee D, Torrelles J, et al. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J Immunol, 2001, 167(4): 2187-2192. doi:10.4049/jimmunol.167.4.2187.
pmid: 11490004
|