中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (7): 693-698.doi: 10.19982/j.issn.1000-6621.20230060
收稿日期:
2023-03-02
出版日期:
2023-07-10
发布日期:
2023-06-29
通信作者:
孙照刚,Email:基金资助:
Liu Dingyi, Sun Hong, Sheng Gang, Sun Zhaogang()
Received:
2023-03-02
Online:
2023-07-10
Published:
2023-06-29
Contact:
Sun Zhaogang, Email: Supported by:
摘要:
细胞可通过细胞外囊泡,也称为外泌体(extracellular vesicles)将自身物质或代谢产物释放到细胞外。随着研究的深入,研究人员发现,细菌也可以产生包裹许多大分子物质(包括蛋白质、脂类、DNA和RNA等)的外泌体,并且细菌外泌体与细菌生存发育及细菌介导的种内和种间相互作用等多种生物学活动有着密切联系。研究人员还发现,革兰阴性菌与革兰阳性菌均可产生包含DNA的外泌体,细菌外泌体DNA可发挥介导水平基因的转移、协助生物膜形成及刺激免疫调节机制等生物学功能。本文针对细菌外泌体DNA的产生方式及其生物学功能进行阐述,使读者更为深入地了解细菌外泌体DNA,推动对细菌外泌体DNA的进一步研究和发展。
中图分类号:
刘丁一, 孙宏, 盛钢, 孙照刚. 细菌外泌体DNA的来源与生物学功能研究进展[J]. 中国防痨杂志, 2023, 45(7): 693-698. doi: 10.19982/j.issn.1000-6621.20230060
Liu Dingyi, Sun Hong, Sheng Gang, Sun Zhaogang. Recent advances in the source and biological function of bacterial DNA in extracellular vesicles[J]. Chinese Journal of Antituberculosis, 2023, 45(7): 693-698. doi: 10.19982/j.issn.1000-6621.20230060
[1] |
Jin Y, Ma L, Zhang W, et al. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res, 2022, 55(1):35. doi:10.1186/s40659-022-00405-2.
doi: 10.1186/s40659-022-00405-2 pmid: 36435789 |
[2] |
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics, 2022, 19(4):1119-1132. doi:10.1007/s13311-022-01232-9.
doi: 10.1007/s13311-022-01232-9 pmid: 35426061 |
[3] |
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 2019, 17(1):13-24. doi:10.1038/s41579-018-0112-2.
doi: 10.1038/s41579-018-0112-2 pmid: 30397270 |
[4] |
Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev, 2010, 74(1):81-94. doi:10.1128/MMBR.00031-09.
doi: 10.1128/MMBR.00031-09 URL |
[5] |
Schooling SR, Beveridge TJ. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol, 2006, 188(16):5945-5957. doi:10.1128/JB.00257-06.
doi: 10.1128/JB.00257-06 pmid: 16885463 |
[6] |
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011, 68(16):2667-2688. doi:10.1007/s00018-011-0689-3.
doi: 10.1007/s00018-011-0689-3 pmid: 21560073 |
[7] |
周舒扬, 张丕奇, 戴肖东, 等. 细菌外膜囊泡(OMV)研究进展. 微生物学杂志, 2021, 41(6):83-89. doi:10.3969/j.issn.1005-7021.2021.06.011.
doi: 10.3969/j.issn.1005-7021.2021.06.011 |
[8] |
Pérez-Cruz C, Carrión O, Delgado L, et al. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol, 2013, 79(6):1874-1881. doi:10.1128/AEM.03657-12.
doi: 10.1128/AEM.03657-12 URL |
[9] |
Pérez-Cruz C, Delgado L, López-Iglesias C, et al. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One, 2015, 10(1):e0116896. doi:10.1371/journal.pone.0116896.
doi: 10.1371/journal.pone.0116896 URL |
[10] |
Bitto NJ, Chapman R, Pidot S, et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep, 2017, 7(1):7072. doi:10.1038/s41598-017-07288-4.
doi: 10.1038/s41598-017-07288-4 pmid: 28765539 |
[11] |
Brown L, Wolf JM, Prados-Rosales R, et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol, 2015, 13(10):620-630. doi:10.1038/nrmicro3480.
doi: 10.1038/nrmicro3480 pmid: 26324094 |
[12] |
Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun, 2017, 8(1):481. doi:10.1038/s41467-017-00492-w.
doi: 10.1038/s41467-017-00492-w pmid: 28883390 |
[13] |
Lee JH, Choi CW, Lee T, et al. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS One, 2013, 8(8):e73196. doi:10.1371/journal.pone.0073196.
doi: 10.1371/journal.pone.0073196 URL |
[14] |
Resch U, Tsatsaronis JA, Le Rhun A, et al. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus. mBio, 2016, 7(6):e00207-16. doi:10.1128/mBio.00207-16.
doi: 10.1128/mBio.00207-16 |
[15] |
Wang X, Thompson CD, Weidenmaier C, et al. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun, 2018, 9(1):1379. doi:10.1038/s41467-018-03847-z.
doi: 10.1038/s41467-018-03847-z pmid: 29643357 |
[16] |
Rath P, Huang C, Wang T, et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2013, 110(49):E4790-E4797. doi:10.1073/pnas.1320118110.
doi: 10.1073/pnas.1320118110 |
[17] |
Rastogi S, Singh AK, Chandra G, et al. The diacylglycerol acyltransferase Rv3371 of Mycobacterium tuberculosis is required for growth arrest and involved in stress-induced cell wall alterations. Tuberculosis (Edinb), 2017, 104:8-19. doi:10.1016/j.tube.2017.02.001.
doi: 10.1016/j.tube.2017.02.001 URL |
[18] |
Briaud P, Carroll RK. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect Immun, 2020, 88(12):e00433-20. doi:10.1128/IAI.00433-20.
doi: 10.1128/IAI.00433-20 |
[19] |
Lee EY, Choi DY, Kim DK, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics, 2009, 9(24):5425-5436. doi:10.1002/pmic.200900338.
doi: 10.1002/pmic.200900338 URL |
[20] |
Jacobson ES, Ikeda R. Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol, 2005, 43(4):327-333. doi:10.1080/13693780412331271081.
doi: 10.1080/13693780412331271081 pmid: 16110778 |
[21] |
Gaudin M, Gauliard E, Schouten S, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep, 2013, 5(1):109-116. doi:10.1111/j.1758-2229.2012.00348.x.
doi: 10.1111/j.1758-2229.2012.00348.x URL |
[22] |
Yaron S, Kolling GL, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H 7 to other enteric bacteria. Appl Environ Microbiol, 2000, 66(10):4414-4420. doi:10.1128/AEM.66.10.4414-4420.2000.
doi: 10.1128/AEM.66.10.4414-4420.2000 URL |
[23] |
Jiang Y, Kong Q, Roland KL, et al. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol, 2014, 304(3/4):431-443. doi:10.1016/j.ijmm.2014.02.006.
doi: 10.1016/j.ijmm.2014.02.006 URL |
[24] |
Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol, 1995, 177(14):3998-4008. doi:10.1128/jb.177.14.3998-4008.1995.
doi: 10.1128/jb.177.14.3998-4008.1995 pmid: 7608073 |
[25] |
Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011, 55(7):3084-3090. doi:10.1128/AAC.00929-10.
doi: 10.1128/AAC.00929-10 pmid: 21518847 |
[26] |
Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One, 2014, 9(4):e95240. doi:10.1371/journal.pone.0095240.
doi: 10.1371/journal.pone.0095240 URL |
[27] |
Hu Y, Yan C, Mu L, et al. Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer. PLoS One, 2015, 10(5):e0125625. doi:10.1371/journal.pone.0125625.
doi: 10.1371/journal.pone.0125625 URL |
[28] |
Puca V, Ercolino E, Celia C, et al. Detection and Quantification of eDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. Int J Mol Sci, 2019, 20(21):5307. doi:10.3390/ijms20215307.
doi: 10.3390/ijms20215307 URL |
[29] |
Grande R, Di Marcantonio MC, Robuffo I, et al. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Front Microbiol, 2015, 6:1369. doi:10.3389/fmicb.2015.01369.
doi: 10.3389/fmicb.2015.01369 pmid: 26733944 |
[30] |
Liao S, Klein MI, Heim KP, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol, 2014, 196(13):2355-2366. doi:10.1128/JB.01493-14.
doi: 10.1128/JB.01493-14 pmid: 24748612 |
[31] |
Gloag ES, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A, 2013, 110(28):11541-11546. doi:10.1073/pnas.1218898110.
doi: 10.1073/pnas.1218898110 URL |
[32] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478):eaau6977. doi:10.1126/science.aau6977.
doi: 10.1126/science.aau6977 URL |
[33] |
Bitto NJ, Cheng L, Johnston EL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles, 2021, 10(6):e12080. doi:10.1002/jev2.12080.
doi: 10.1002/jev2.12080 |
[34] |
Nandakumar R, Tschismarov R, Meissner F, et al. Intracellular bacteria engage a STING-TBK1-MVB12b pathway to enable paracrine cGAS-STING signalling. Nat Microbiol, 2019, 4(4):701-713. doi:10.1038/s41564-019-0367-z.
doi: 10.1038/s41564-019-0367-z pmid: 30804548 |
[35] |
Giri PK, Schorey JS. Exosomes derived from M.Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One, 2008, 3(6):e2461. doi:10.1371/journal.pone.0002461.
doi: 10.1371/journal.pone.0002461 URL |
[36] |
Singh PP, Smith VL, Karakousis PC, et al. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol, 2012, 189(2):777-785. doi:10.4049/jimmunol.1103638.
doi: 10.4049/jimmunol.1103638 URL |
[37] |
Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813):740-745. doi:10.1038/35047123.
doi: 10.1038/35047123 |
[38] |
Pompei L, Jang S, Zamlynny B, et al. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J Immunol, 2007, 178(8):5192-5199. doi:10.4049/jimmunol.178.8.5192.
doi: 10.4049/jimmunol.178.8.5192 pmid: 17404302 |
[39] |
Torralba D, Baixauli F, Villarroya-Beltri C, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun, 2018, 9(1):2658. doi:10.1038/s41467-018-05077-9.
doi: 10.1038/s41467-018-05077-9 pmid: 29985392 |
[40] |
Sisquella X, Ofir-Birin Y, Pimentel MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun, 2017, 8(1):1985. doi:10.1038/s41467-017-02083-1.
doi: 10.1038/s41467-017-02083-1 pmid: 29215015 |
[41] |
Li Y, Zhao R, Cheng K, et al. Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy via Immune Activation and Checkpoint Inhibition. ACS Nano, 2020, 14(12):16698-16711. doi:10.1021/acsnano.0c03776.
doi: 10.1021/acsnano.0c03776 URL |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[3] | 中国防痨协会《中国防痨杂志》编辑委员会 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所 Inspire⁃CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
[4] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[5] | 李杨, 孙峰, 张文宏. 结核病短程治疗研究:回顾与展望[J]. 中国防痨杂志, 2024, 46(9): 991-997. |
[6] | 李志丽, 刘宇红. 《世界卫生组织结核病整合指南模块6: 结核病及其共患病-HIV》解读[J]. 中国防痨杂志, 2024, 46(8): 869-873. |
[7] | 田宏晶, 张彦军, 邓强, 李军杰, 杨军, 刘鑫锋, 杜建强. 基于核因子κB受体活化因子配体信号通路激活破骨细胞治疗骨结核的研究进展[J]. 中国防痨杂志, 2024, 46(8): 971-975. |
[8] | 傅可言, 朱邦政, 叶健. 间质性肺疾病合并结核分枝杆菌感染的研究进展[J]. 中国防痨杂志, 2024, 46(7): 823-829. |
[9] | 刘桂珍, 邓国防. 《结核病政策指南制订过程中发现的证据和研究缺口(第2版)》解读——结核病相关共病[J]. 中国防痨杂志, 2024, 46(6): 618-624. |
[10] | 中国防痨协会护理专业分会, 同济大学附属上海市肺科医院. 肺结核患者营养管理护理实践专家共识[J]. 中国防痨杂志, 2024, 46(5): 495-501. |
[11] | 国家呼吸内科医疗质量控制中心, 中华医学会结核病学分会, 中国防痨协会结核病控制专业分会, 中日友好医院. 综合医疗机构肺结核早期发现临床实践指南[J]. 中国防痨杂志, 2024, 46(2): 127-140. |
[12] | 李琦, 聂文娟, 初乃惠. 耐药肺结核短程治疗方案面临的困难与挑战[J]. 中国防痨杂志, 2024, 46(11): 1297-1302. |
[13] | 王煜童, 刘宇红. 世界卫生组织《关于耐药结核病治疗关键性修订的快速通告》解读[J]. 中国防痨杂志, 2024, 46(11): 1303-1305. |
[14] | 钱秉中, 郑志杰. 中国可以终止结核病[J]. 中国防痨杂志, 2024, 46(10): 1185-1187. |
[15] | 杨逸轩, 辛继宾, 阮巧玲, 应峻, 张文宏. 文献计量视角下的结核分枝杆菌潜伏感染研究现状与展望[J]. 中国防痨杂志, 2024, 46(10): 1209-1218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||