Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (3): 311-317.doi: 10.19982/j.issn.1000-6621.20220447
• Review Articles • Previous Articles Next Articles
Zhou Feng1, Li Tongxin1, Yang Song2(), Tang Shenjie3(
)
Received:
2022-11-09
Online:
2023-03-10
Published:
2023-03-07
Contact:
Yang Song,Tang Shenjie
E-mail:yangsong5@aliyun.com;tangsj1106@vip.sina.com
Supported by:
CLC Number:
Zhou Feng, Li Tongxin, Yang Song, Tang Shenjie. Progress on short-course regimens for the treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(3): 311-317. doi: 10.19982/j.issn.1000-6621.20220447
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220447
[1] |
Chaisson RE, Frick M, Nahid P. The scientific response to TB-the other deadly global health emergency. Int J Tuberc Lung Dis, 2022, 26(3):186-189. doi:10.5588/ijtld.21.0734.
doi: 10.5588/ijtld.21.0734 pmid: 35197158 |
[2] | World Health Organization.Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[3] |
Navarro-Flores A, Fernandez-Chinguel JE, Pacheco-Barrios N, et al. Global morbidity and mortality of central nervous system tuberculosis: a systematic revi ew andmeta-analysis. J Neurol, 2022, 269(7):3482-3494. doi:10.1007/s00415-022-11052-8.
doi: 10.1007/s00415-022-11052-8 pmid: 35288778 |
[4] |
蔡芋晴, 曾惠清, 李琪, 等. 新型冠状病毒肺炎预后临床预测评分研究进展. 中华结核和呼吸杂志, 2022, 45(7):706-711. doi:10.3760/cma.j.cn112147-20211125-00837.
doi: 10.3760/cma.j.cn112147-20211125 |
[5] |
Dheda K, Perumal T, Moultrie H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir Med, 2022, 10(6):603-622. doi:10.1016/S2213-2600(22)00092-3.
doi: 10.1016/S2213-2600(22)00092-3 pmid: 35338841 |
[6] |
Nie Q, Tao L, Li Y, et al. High-dose gatifloxacin-based shorter treatment regimens for MDR/RR-TB. Int J Infect Dis, 2022, 115:142-148. doi:10.1016/j.ijid.2021.11.037.
doi: 10.1016/j.ijid.2021.11.037 URL |
[7] |
Dorman SE, Nahid P, Kurbatova EV, et al. High-dose rifapentine with or without moxifloxacin for shortening treatment of pulmonary tuberculosis: Study protocol for TBTC study 31/ACTG A5349 phase 3 clinical trial. Contemp Clin Trials, 2020, 90:105938. doi:10.1016/j.cct.2020.105938.
doi: 10.1016/j.cct.2020.105938 URL |
[8] |
Grace AG, Mittal A, Jain S, et al. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev, 2019, 12(12): CD012918. doi:10.1002/14651858.CD012918.pub2.
doi: 10.1002/14651858.CD012918.pub2 |
[9] | Silva DR, Mello FCQ, Migliori GB. Shortened tuberculosis treatment regimens: what is new? J Bras Pneumol, 2020, 46(2): e20200009. doi:10.36416/1806-3756/e20200009. |
[10] |
Imperial MZ, Nahid P, Phillips PPJ, et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat Med, 2018, 24(11):1708-1715. doi:10.1038/s41591-018-0224-2.
doi: 10.1038/s41591-018-0224-2 pmid: 30397355 |
[11] |
Velayutham B, Jawahar MS, Nair D, et al. 4-month moxifloxacin containing regimens in the treatment of patients with sputum-positive pulmonary tuberculosis in South India-a randomised clinical trial. Trop Med Int Health, 2020, 25(4):483-495. doi:10.1111/tmi.13371.
doi: 10.1111/tmi.13371 pmid: 31944502 |
[12] |
Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med, 2014, 371(17):1577-1587. doi:10.1056/NEJMoa1407426.
doi: 10.1056/NEJMoa1407426 URL |
[13] |
Ignatius EH, Swindells S. Are We There Yet? Short-Course Regimens in TB and HIV: From Prevention to Treatment of Latent to XDR TB. Curr HIV/AIDS Rep, 2020, 17(6):589-600. doi:10.1007/s11904-020-00529-8.
doi: 10.1007/s11904-020-00529-8 URL |
[14] |
Naidoo A, Naidoo K, McIlleron H, et al. A Review of Moxifloxacin for the Treatment of Drug-Susceptible Tuberculosis. J Clin Pharmacol, 2017, 57(11):1369-1386. doi:10.1002/jcph.968.
doi: 10.1002/jcph.968 URL |
[15] |
Migliori GB, Besozzi G, Girardi E, et al. Clinical and operational value of the extensively drugresistant tuberculosis definition. Eur Respir J, 2007, 30(4):623-626. doi:10.1183/09031936.00077307.
doi: 10.1183/09031936.00077307 pmid: 17690121 |
[16] |
Reddy KP, Horsburgh CR, Wood R, et al. Shortened Tuberculosis Treatment for People with HIV in South Africa. A Model-based Evaluation and Cost-effectiveness Analysis. Ann Am Thorac Soc, 2020, 17(2):202-211. doi:10.1513/AnnalsATS.201905-418OC.
doi: 10.1513/AnnalsATS.201905-418OC pmid: 31689133 |
[17] |
Svensson EM, Svensson RJ, Te Brake LHM, et al. The Potential for Treatment Shortening With Higher Rifampicin Doses: Relating Drug Exposure to Treatment Response in Patients With Pulmonary Tuberculosis. Clin Infect Dis, 2018, 67(1):34-41. doi:10.1093/cid/ciy026.
doi: 10.1093/cid/ciy026 pmid: 29917079 |
[18] |
Peloquin C. What is the ‘right’ dose of rifampin?. Int J Tuberc Lung Dis, 2003, 7(1):3-5.
pmid: 12701829 |
[19] |
Tweed CD, Dawson R, Burger DA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med, 2019, 7(12):1048-1058. doi:10.1016/S2213-2600(19)30366-2.
doi: 10.1016/S2213-2600(19)30366-2 pmid: 31732485 |
[20] |
Conde MB, Efron A, Loredo C, et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a doubleblind, randomised, controlled phase II trial. Lancet, 2009, 373(9670): 1183-1189. doi:10.1016/S0140-6736(09)60333-0.
doi: 10.1016/S0140-6736(09)60333-0 URL |
[21] |
Milstein M, Lecca L, Peloquin C, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis, 2016, 16(1):453. doi:10.1186/s12879-016-1790-x.
doi: 10.1186/s12879-016-1790-x pmid: 27567500 |
[22] |
Velásquez GE, Brooks MB, Coit JM, et al. Efficacy and Safety of High-Dose Rifampin in Pulmonary Tuberculosis. A Randomized Controlled Trial. Am J Respir Crit Care Med, 2018, 198(5):657-666. doi:10.1164/rccm.201712-2524OC.
doi: 10.1164/rccm.201712-2524OC URL |
[23] |
Dorman SE, Nahid P, Kurbatova EB, et al. Four-month rifapentine regimens withor without moxifloxacin for tuberculosis. N Engl J Med, 2021, 384(18):1705-1718. doi:10.1056/NEJMoa 2033400.
doi: 10.1056/NEJMoa 2033400 URL |
[24] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[25] |
Pranger AD, van der Werf TS, Kosterink JGW, et al. The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs, 2019, 79(2):161-171. doi:10.1007/s40265-018-1043-y.
doi: 10.1007/s40265-018-1043-y pmid: 30617959 |
[26] |
Dorman SE, Johnson JL, Goldberg S, et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med, 2009, 180(3):273-280. doi:10.1164/rccm.200901-0078OC.
doi: 10.1164/rccm.200901-0078OC URL |
[27] | World Health Organization.WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-susceptible tuberculosis treatment. Geneva: World Health Organization, 2022. |
[28] |
Merle CS, Fielding K, Sow OB, et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med, 2014, 371(17):1588-1598. doi:10.1056/NEJMoa1 315817.
doi: 10.1056/NEJMoa1315817 URL |
[29] |
Jindani A, Harrison TS, Nunn AJ, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med, 2014, 371(17):1599-1608. doi:10.1056/NEJMoa1314210.
doi: 10.1056/NEJMoa1314210 URL |
[30] |
Turkova A, Wills GH, Wobudeya E, et al. Shorter treatment for non-severe tuberculosis in African and Indian children. N Engl J Med, 2022, 386(10):911-922. doi:10.1056/NEJMoa2104535.
doi: 10.1056/NEJMoa2104535 URL |
[31] |
Van Deun A, Aung KJM, Halim MA, et al. Short, highly effect tive, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010, 182 (5):684-692. doi:10.1164/rccm.201001-0077OC.
doi: 10.1164/rccm.201001-0077OC URL |
[32] |
Kuaban C, Noeske J, Rieder HL, et al. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis, 2015, 19(5):517-524. doi:10.5588/ijtld.14.0535.:517-24.
doi: 10.5588/ijtld.14.0535 pmid: 25868018 |
[33] |
Piubello A, Hassane Harouna S, Souleymane MB, et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis, 2014, 18 (10):1188-1194. doi:10.5588/ijtld.13.0075.:1188-94.
doi: 10.5588/ijtld.13.0075 pmid: 25216832 |
[34] | World Health Organization. WHO treatment guidelines for drug-resistant tuberculosis. Geneva:World Health Organization, 2016. |
[35] |
Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med, 2019, 380 (13):1201-1213. doi:10.1056/NEJMoa1811867.
doi: 10.1056/NEJMoa1811867 URL |
[36] |
Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, Delamanid, Linezolid and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clin Infect Dis, 2022:ciac528. doi:10.1093/cid/ciac528.
doi: 10.1093/cid/ciac528 |
[37] |
Berry C, du Cros P, Fielding K, et al. TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials, 2022, 23(1):484. doi:10.1186/s13063-022-06331-8.
doi: 10.1186/s13063-022-06331-8 pmid: 35698158 |
[38] |
Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J, 2012, 40(6):1430-1442. doi:10.1183/09031936.00022912.
doi: 10.1183/09031936.00022912 pmid: 22496332 |
[39] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial. Trials, 2019, 20(1):57. doi:10.1186/s13063-018-3053-1.
doi: 10.1186/s13063-018-3053-1 pmid: 30651149 |
[40] |
Decroo T, Maug AKJ, Hossain MA, et al. Injectables’ key role in rifampicin-resistant tuberculosis shorter treatment regimen outcomes. PLoS One, 2020, 15(8):e0238016. doi:10.1371/journal.pone.0238016.
doi: 10.1371/journal.pone.0238016 URL |
[41] | World Health Organization. Rapid Communication: key changes to the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2019. |
[42] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva:World Health Organization, 2019. |
[43] |
Ahuja SD, Ashkin D, Avendano M, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med, 2012, 9(8):e1001300. doi:10.1371/journal.pmed.1001300.
doi: 10.1371/journal.pmed.1001300 URL |
[44] |
Bastos ML, Hussain H, Weyer K, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug-resistant tuberculosis according to drug susceptibility testing to first- and second-line drugs: an individual patient data meta-analysis. Clin Infect Dis, 2014, 59(10):1364-1374. doi:10.1093/cid/ciu619.
doi: 10.1093/cid/ciu619 pmid: 25097082 |
[45] |
Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data analysis. Lancet, 2018, 392(10150):821-834. doi:10.1016/S0140-6736(18)31644-1.
doi: 10.1016/S0140-6736(18)31644-1 URL |
[46] | World Health Organization. Rapid communication: key changes to the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2022. |
[47] |
Ndjeka N, Campbell JR, Meintjes G, et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis, 2022, 22(7):1042-1051. doi:10.1016/S1473-3099(21)00811-2.
doi: 10.1016/S1473-3099(21)00811-2 pmid: 35512718 |
[48] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med, 2020, 382(10): 893-902. doi:10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL |
[49] |
Esmail A, Oelofse S, Lombard C, et al. An All-Oral 6-Month Regimen for Multidrug-Resistant Tuberculosis: A Multicenter, Randomized Controlled Clinical Trial (the NExT Study). Am J Respir Crit Care Med, 2022, 205(10):1214-1227. doi:10.1164/rccm. 202107-1779OC.
doi: 10.1164/rccm. 202107-1779OC URL |
[50] |
Khan PY, Franke MF, Hewison C, et al. All-oral longer regimens are effective for the management of multidrug-resistant tuberculosis in high-burden settings. Eur Respir J, 2022, 59(1):2004345. doi:10.1183/13993003.04345-2020.
doi: 10.1183/13993003.04345-2020 URL |
[51] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid Regimens For Drug-Resistant Tuberculosis. N Engl J Med, 2022, 387(9):810-823. doi:10.1056/NEJMoa2119430.
doi: 10.1056/NEJMoa2119430 URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||