Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (3): 305-310.doi: 10.19982/j.issn.1000-6621.20220374
• Review Articles • Previous Articles Next Articles
Ma Zichun, Shang Yuanyuan, Pang Yu, Li Shanshan()
Received:
2022-09-29
Online:
2023-03-10
Published:
2023-03-07
Contact:
Li Shanshan
E-mail:lss9011@126.com
Supported by:
CLC Number:
Ma Zichun, Shang Yuanyuan, Pang Yu, Li Shanshan. Research progress of chemokines in the diagnosis of tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(3): 305-310. doi: 10.19982/j.issn.1000-6621.20220374
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220374
[1] |
Xu JC, Li ZY, Chen XN, et al. More significance of TB-IGRA except for the diagnose of tuberculosis. J Clin Lab Anal, 2018, 32(1): e22183. doi:10.1002/jcla.22183.
doi: 10.1002/jcla.22183 URL |
[2] |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep, 2020, 47(5): 4065-4075. doi:10.1007/s11033-020-05413-7.
doi: 10.1007/s11033-020-05413-7 URL |
[3] |
Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol, 2007, 25: 787-820. doi:10.1146/annurev.immunol.24.021605.090529.
doi: 10.1146/annurev.immunol.24.021605.090529 pmid: 17291188 |
[4] |
Kumar NP, Moideen K, Nancy A, et al. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis. Sci Rep, 2019, 9(1): 18217. doi:10.1038/s41598-019-54803-w.
doi: 10.1038/s41598-019-54803-w pmid: 31796883 |
[5] |
Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci, 2017, 18(10): 2088. doi:10.3390/ijms18102088.
doi: 10.3390/ijms18102088 |
[6] |
Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity, 2012, 36(5): 705-716. doi:10.1016/j.immuni.2012.05.008.
doi: 10.1016/j.immuni.2012.05.008 pmid: 22633458 |
[7] | 黎友伦, 罗永艾, 王国治. 细胞因子及其受体在结核免疫中的作用. 国外医学(内科学分册), 2005, 32(4): 146-149, 167. |
[8] |
Gustavsson M. New insights into the structure and function of chemokine receptor: chemokine complexes from an experimental perspective. J Leukoc Biol, 2020, 107(6): 1115-1122. doi:10.1002/JLB.2MR1219-288R.
doi: 10.1002/JLB.2MR1219-288R URL |
[9] |
Domingo-Gonzalez R, Prince O, Cooper A, et al. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr, 2016, 4(5). doi:10.1128/microbiolspec.TBTB2-0018-2016.
doi: 10.1128/microbiolspec.TBTB2-0018-2016 |
[10] |
李瑞雪, 杜娟, 程义局. 趋化因子与结核病的关系研究进展. 医学综述, 2021, 27(20): 3963-3968. doi:10.3969/j.issn.1006-2084.2021.20.003.
doi: 10.3969/j.issn.1006-2084.2021.20.003 |
[11] |
Monin L, Khader SA. Chemokines in tuberculosis: the good, the bad and the ugly. Semin Immunol, 2014, 26(6): 552-558. doi:10.1016/j.smim.2014.09.004.
doi: 10.1016/j.smim.2014.09.004 pmid: 25444549 |
[12] |
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4). doi:10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1128/microbiolspec.GPP3-0022-2018 |
[13] |
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J, 2018, 285(16): 2944-2971. doi:10.1111/febs.14466.
doi: 10.1111/febs.14466 pmid: 29637711 |
[14] |
Chendi BH, Tveiten H, Snyders CI, et al. CCL1 and IL-2Ra differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in low TB burden countries. J Infect, 2021, 83(4): 433-443. doi:10.1016/j.jinf.2021.07.036.
doi: 10.1016/j.jinf.2021.07.036 pmid: 34333033 |
[15] | 王晓蕾. 结核病感染免疫相关因子IL-10的表达调控及MCP-1基因多态性的研究. 济南: 山东大学, 2018. |
[16] |
Kipnis A, Basaraba RJ, Orme IM, et al. Role of chemokine ligand 2 in the protective response to early murine pulmonary tuberculosis. Immunology, 2003, 109(4): 547-551. doi:10.1046/j.1365-2567.2003.01680.x.
doi: 10.1046/j.1365-2567.2003.01680.x pmid: 12871221 |
[17] |
Biswas SK, Mittal M, Sinha E, et al. Exploring the Role of C-C Motif Chemokine Ligand-2 Single Nucleotide Polymorphism in Pulmonary Tuberculosis: A Genetic Association Study from North India. J Immunol Res, 2020, 2020: 1019639. doi:10.1155/2020/1019639.
doi: 10.1155/2020/1019639 |
[18] |
Kumar NP, Moideen K, Nancy A, et al. Plasma Chemokines Are Baseline Predictors of Unfavorable Treatment Outcomes in Pulmonary Tuberculosis. Clin Infect Dis, 2021, 73(9): e3419-e3427. doi:10.1093/cid/ciaa1104.
doi: 10.1093/cid/ciaa1104 pmid: 32766812 |
[19] |
Joosten SA, van Meijgaarden KE, Savage ND, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A, 2007, 104(19): 8029-8034. doi:10.1073/pnas.0702257104.
doi: 10.1073/pnas.0702257104 URL |
[20] |
Phalane KG, Kriel M, Loxton AG, et al. Differential expression of host biomarkers in saliva and serum samples from individuals with suspected pulmonary tuberculosis. Mediators Inflamm, 2013, 2013: 981984. doi:10.1155/2013/981984.
doi: 10.1155/2013/981984 |
[21] |
Sutherland JS, Mendy J, Gindeh A, et al. Use of lateral flow assays to determine IP-10 and CCL4 levels in pleural effusions and whole blood for TB diagnosis. Tuberculosis (Edinb), 2016, 96: 31-36. doi:10.1016/j.tube.2015.10.011.
doi: 10.1016/j.tube.2015.10.011 URL |
[22] |
Akashi S, Suzukawa M, Takeda K, et al. IL-1RA in the supernatant of QuantiFERON-TB Gold In-Tube and QuantiFERON-TB Gold Plus is useful for discriminating active tuberculosis from latent infection. J Infect Chemother, 2021, 27(4): 617-624. doi:10.1016/j.jiac.2020.11.023.
doi: 10.1016/j.jiac.2020.11.023 pmid: 33317988 |
[23] | 乔敏, 李姗姗, 刘荣梅, 等. CC趋化因子和CXC趋化因子及其受体在结核分枝杆菌感染免疫应答中作用的研究进展. 细胞与分子免疫学杂志, 2021, 37(4): 373-377. |
[24] |
Sheng YF, Qi Q. Association of chemotactic chemokine ligand 5 rs2107538 polymorphism with tuberculosis susceptibility: A meta-analysis. Innate Immun, 2020, 26(5): 358-363. doi:10.1177/1753425919891662.
doi: 10.1177/1753425919891662 URL |
[25] |
Pydi SS, Ghousunnissa S, Devalraju KP, et al. Down regulation of RANTES in pleural site is associated with inhibition of antigen specific response in tuberculosis. Tuberculosis (Edinb), 2019, 116S: S123-S130. doi:10.1016/j.tube.2019.04.020.
doi: 10.1016/j.tube.2019.04.020 |
[26] |
Wu CL, Yin R, Wang SN, et al. A Review of CXCL 1 in Cardiac Fibrosis. Front Cardiovasc Med, 2021, 8: 674498. doi:10.3389/fcvm.2021.674498.
doi: 10.3389/fcvm.2021.674498 URL |
[27] |
Koyuncu D, Niazi MKK, Tavolara T, et al. CXCL1: A new diagnostic biomarker for human tuberculosis discovered using Diversity Outbred mice. PLoS Pathog, 2021, 17(8): e1009773. doi:10.1371/journal.ppat.1009773.
doi: 10.1371/journal.ppat.1009773 URL |
[28] |
Krupa A, Fol M, Dziadek BR, et al. Binding of CXCL8/IL-8 to Mycobacterium tuberculosis Modulates the Innate Immune Response. Mediators Inflamm, 2015, 2015: 124762. doi:10.1155/2015/124762.
doi: 10.1155/2015/124762 |
[29] |
邢志伟, 张珣, 王红, 等. CXCL8及其受体在肺结核诊断中的临床应用. 河北医科大学学报, 2020, 41(10): 1176-1180. doi:10.3969/j.issn.1007-3205.2020.10.013.
doi: 10.3969/j.issn.1007-3205.2020.10.013 |
[30] |
Yao X, Liu Y, Liu Y, et al. Multiplex analysis of plasma cytokines/chemokines showing different immune responses in active TB patients, latent TB infection and healthy participants. Tuberculosis (Edinb), 2017, 107: 88-94. doi:10.1016/j.tube.2017.07.013.
doi: 10.1016/j.tube.2017.07.013 URL |
[31] |
Koper OM, Kamińska J, Sawicki K, et al. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med, 2018, 27(6): 849-856. doi:10.17219/acem/68846.
doi: 10.17219/acem/68846 pmid: 29893515 |
[32] |
Shang X, Wang L, Liu Y, et al. Diagnostic value of CXCR3 and its ligands in spinal tuberculosis. Exp Ther Med, 2021, 21(1): 73. doi:10.3892/etm.2020.9505.
doi: 10.3892/etm.2020.9505 pmid: 33365073 |
[33] |
Korma W, Mihret A, Chang Y, et al. Antigen-Specific Cytokine and Chemokine Gene Expression for Diagnosing Latent and Active Tuberculosis. Diagnostics (Basel), 2020, 10(9): 716. doi:10.3390/diagnostics10090716.
doi: 10.3390/diagnostics10090716 |
[34] |
Qiu X, Xiong T, Su X, et al. Accumulate evidence for IP-10 in diagnosing pulmonary tuberculosis. BMC Infect Dis, 2019, 19(1): 924. doi:10.1186/s12879-019-4466-5.
doi: 10.1186/s12879-019-4466-5 pmid: 31666025 |
[35] |
Chung WY, Lee KS, Park JH, et al. TB Antigen-Stimulated CXCR3 Ligand Assay for Diagnosis of Tuberculous Lymphadenitis. Int J Environ Res Public Health, 2021, 18(15): 8020. doi:10.3390/ijerph18158020.
doi: 10.3390/ijerph18158020 URL |
[36] |
魏兰, 贾新转, 秦学博, 等. 血清CXC趋化因子受体3配体检测在活动性肺结核诊断中的价值. 中国防痨杂志, 2019, 41(11): 1167-1172. doi:10.3969/j.issn.1000-6621.2019.11.005.
doi: 10.3969/j.issn.1000-6621.2019.11.005 |
[37] |
Lee K, Chung W, Jung Y, et al. CXCR3 ligands as clinical markers for pulmonary tuberculosis. Int J Tuberc Lung Dis, 2015, 19(2): 191-199. doi:10.5588/ijtld.14.0525.
doi: 10.5588/ijtld.14.0525 pmid: 25574918 |
[38] |
Bellamri N, Viel R, Morzadec C, et al. TNF-α and IL-10 Control CXCL 13 Expression in Human Macrophages. J Immunol, 2020, 204(9): 2492-2502. doi:10.4049/jimmunol.1900790.
doi: 10.4049/jimmunol.1900790 |
[39] |
Ardain A, Domingo-Gonzalez R, Das S, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature, 2019, 570(7762): 528-532. doi:10.1038/s41586-019-1276-2.
doi: 10.1038/s41586-019-1276-2 URL |
[40] |
Jiang J, Cao Z, Qu J, et al. PD-1- expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13. Scand J Immunol, 2020, 91(4): e12858. doi:10.1111/sji.12858.
doi: 10.1111/sji.12858 |
[41] |
Estévez O, Anibarro L, Garet E, et al. Identification of candidate host serum and saliva biomarkers for a better diagnosis of active and latent tuberculosis infection. PLoS One, 2020, 15(7): e0235859. doi:10.1371/journal.pone.0235859.
doi: 10.1371/journal.pone.0235859 URL |
[42] |
Cormican S, Griffin MD. Fractalkine (CX3CL1) and Its Receptor CX3CR1: A Promising Therapeutic Target in Chronic Kidney Disease? Front Immunol, 2021, 12: 664202. doi:10.3389/fimmu.2021.664202.
doi: 10.3389/fimmu.2021.664202 URL |
[43] |
Mota CMD, Antunes-Rodrigues J, Branco LGS. Central fractalkine stimulates central prostaglandin E2 production and induces systemic inflammatory responses. Brain Res Bull, 2018, 140: 311-317. doi:10.1016/j.brainresbull.2018.05.024.
doi: 10.1016/j.brainresbull.2018.05.024 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||