Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (1): 67-72.doi: 10.19982/j.issn.1000-6621.20220280
• Original Article • Previous Articles Next Articles
Sheng Yunfeng, Qiu Meihua, Chen Yuanyuan, Sun Lifang, Zhen Libo()
Received:
2022-07-27
Online:
2023-01-10
Published:
2022-12-30
Contact:
Zhen Libo
E-mail:zlb8191@126.com
Supported by:
CLC Number:
Sheng Yunfeng, Qiu Meihua, Chen Yuanyuan, Sun Lifang, Zhen Libo. Research on mechanisms of dendritic cell miR-17 regulating naive CD4+T lymphocytes unevenly differentiating to Treg/Th17[J]. Chinese Journal of Antituberculosis, 2023, 45(1): 67-72. doi: 10.19982/j.issn.1000-6621.20220280
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220280
[1] |
Khan N, Vidyarthi A, Pahari S, et al. Distinct Strategies Employed by Dendritic Cells and Macrophages in Restricting Mycobacterium tuberculosis Infection: Different Philosophies but Same Desire. Int Rev Immunol, 2016, 35(5):386-398. doi:10.3109/08830185.2015.1015718.
doi: 10.3109/08830185.2015.1015718. URL |
[2] |
Ali SZ, Langden SSS, Munkhzul C, et al. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sc, 2020, 21(5):1723. doi:10.3390/ijms21051723.
doi: 10.3390/ijms21051723. |
[3] |
Jámbor I, Szabó K, Zeher M, et al. The importance of microRNAs in the development of systemic autoimmune disorders. Orv Hetil, 2019, 160(15):563-572. doi:10.1556/650.2019.31349.
doi: 10.1556/650.2019.31349. URL |
[4] |
Kumar R, Sahu SK, Kumar M, et al. MicroRNA 17-5 p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol, 2016, 18(5):679-691. doi:10.1111/cmi.12540.
doi: 10.1111/cmi.12540. URL |
[5] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[6] |
Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol, 2009, 10(3):192-206. doi:10.1038/nrm2640.
doi: 10.1038/nrm2640. URL |
[7] |
Shipony Z, Mukamel Z, Cohen NM, et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature, 2014, 513(7516):115-119. doi:10.1038/nature13458.
doi: 10.1038/nature13458. URL |
[8] |
Gyorffy B, Bottai G, Fleischer T, et al. Aberrant DNA methy-lation impacts gene expression and prognosis in breast cancer subtypes. Int J Cancer, 2016, 138(1):87-97. doi:10.1002/ijc.29684.
doi: 10.1002/ijc.29684. URL |
[9] |
Boyne DJ, O’Sullivan DE, Olij BF, et al. Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systema-tic Literature Review and Meta-analysis Cancer Epidemiol Biomarkers Prev, 2018, 27(11):1320-1331. doi:10.1158/1055-9965.EPI-18-0175.
doi: 10.1158/1055-9965.EPI-18-0175. URL |
[10] |
Scott-Browne JP, Shafiani S, Tucker-Heard G, et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med, 2007, 204(9): 2159-2169. doi:10.1084/jem.20062105.
doi: 10.1084/jem.20062105 pmid: 17709423 |
[11] |
Wergeland I, Assmus J, Dyrhol-Riise AM. T regulatory cells and immune activation in Mycobacterium tuberculosis infection and the effect of preventive therapy. Scand J Immunol, 2011, 73(3):234-242. doi:10.1111/j.1365-3083.2010.02496.x.
doi: 10.1111/j.1365-3083.2010.02496.x pmid: 21204895 |
[12] |
Jurado JO, Pasquinelli V, Alvarez IB, et al. IL-17 and IFN-γ. Leukoc Biol, 2012, 91(6):991-1002. doi:10.1189/jlb.1211619.
doi: 10.1189/jlb.1211619. URL |
[13] |
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating micro-RNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008, 105(30):10513-10518. doi:10.1073/pnas.0804549105.
doi: 10.1073/pnas.0804549105 pmid: 18663219 |
[14] |
Fathizadeh H, Hayat SMG, Dao S, et al. Long Non-Coding RNA Molecules in Tuberculosis. Int J Biol Macromol, 2020, 156:340-346. doi:10.1016/j.ijbiomac.2020.04.030.
doi: S0141-8130(20)32884-1 pmid: 32283111 |
[15] |
Bettencourt P, Pires D, Anes E. Immunomodulating micro-RNAs of mycobacterial infections.Tuberculosis (Edinb), 2016, 97:1-7. doi:10.1016/j.tube.2015.12.004.
doi: 10.1016/j.tube.2015.12.004. URL |
[16] |
Tu H, Yang S, Jiang T, et al. Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg Microbes Infect, 2019, 8(1):448-460. doi:10.1080/22221751.2019.1590129.
doi: 10.1080/22221751.2019.1590129. URL |
[17] |
Najm A, Mason FM, Preuss P, et al. MicroRNA-17-5p Reduces Inflammation and Bone Erosions in Mice With Collagen-Induced Arthritis and Directly Targets the JAK/STAT Pathway in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol, 2020, 72(12):2030-2039. doi:10.1002/art.41441.
doi: 10.1002/art.41441. URL |
[18] |
Ji Z, Xue W, Zhang L. Schisandrin B Attenuates Inflammation in LPS-Induced Sepsis Through miR-17-5p Downregula-ting TLR4. Inflammation, 2019, 42(2):731-739. doi:10.1007/s10753-018-0931-3.
doi: 10.1007/s10753-018-0931-3. URL |
[19] |
Oglesby IK, Venckon SF, Agrawal R, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir, 2015, 46(5):1350-1360. doi:10.1183/09031936.00163414.
doi: 10.1183/09031936.00163414. URL |
[20] |
Tan L, Liu L, Jiang Z, et al. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA 1 in atherosclerosis. J Pharmacol Sci, 2019, 139(4):280-288. doi:10.1016/j.jphs.2018.11.012.
doi: 10.1016/j.jphs.2018.11.012. URL |
[21] |
Kühtreiber WM, Tran L, Kim T, et al. Long term reduction in hyperglycemia in advanced type 1 diabetes: The value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines, 2018, 3:23. doi:10.1038/s41541-018-0062-8.
doi: 10.1038/s41541-018-0062-8 pmid: 29951281 |
[22] |
Yang H, Barbi J, Wu C. et al. MicroRNA-17 Modulates Regu-latory T Cell Function by Targeting Co-regulators of the Foxp 3 Transcription Factor. Immunity, 2016, 45(1): 83-93. doi:10.1016/j.immuni.2016.06.022.
doi: 10.1016/j.immuni.2016.06.022. URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||