Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (1): 60-66.doi: 10.19982/j.issn.1000-6621.20220457
• Original Article • Previous Articles Next Articles
Yu Meiling1,2, Zhang Chenchen2, Wei Wenjing2, Zhao Yuchuan2, Zhuo Wenji2, Zheng Lei1()
Received:
2022-08-19
Online:
2023-01-10
Published:
2022-12-30
Contact:
Zheng Lei
E-mail:nfyyzl@163.com
Supported by:
CLC Number:
Yu Meiling, Zhang Chenchen, Wei Wenjing, Zhao Yuchuan, Zhuo Wenji, Zheng Lei. Study on high-concentration p-aminosalicylic acid resistant Mycobacterium tuberculosis induced in vitro and the mutation sites[J]. Chinese Journal of Antituberculosis, 2023, 45(1): 60-66. doi: 10.19982/j.issn.1000-6621.20220457
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220457
菌株 | INH (MIC= 0.2) | Sm (MIC= 2) | EMB (MIC= 5) | Ofx (MIC= 2) | Mfx (MIC= 0.5) | Am (MIC= 1) | Km (MIC= 5) | Cm (MIC= 2) | Pto (MIC= 2.5) | PAS (MIC= 1) | RFP (MIC= 1) | Rfb (MIC= 0.5) | Lfx (MIC= 2) | PZA (MIC= 100) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | <0.025 | 0.50 | 1.25 | 0.5 | 0.12 | 1 | 2.50 | 1 | <0.62 | <0.5 | <0.25 | <0.12 | <0.5 | <50 |
P2 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | <0.5 | <0.25 | <0.12 | <0.5 | <50 |
P3 | <0.025 | <0.25 | 1.25 | 1.0 | 0.25 | 1 | 2.50 | 2 | <0.62 | 4.0 | 0.50 | <0.12 | <0.5 | <50 |
P4 | 0.200 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 1.25 | 1 | <0.62 | 4.0 | 0.50 | <0.12 | <0.5 | <50 |
P5 | 0.200 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | 4.0 | 0.50 | <0.12 | <0.5 | <50 |
P6 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 8.0 | <0.25 | <0.12 | <0.5 | <50 |
P7 | <0.025 | <0.25 | 1.25 | 1.0 | 0.25 | 1 | 2.50 | 2 | <0.62 | 8.0 | <0.25 | <0.12 | <0.5 | <50 |
P8 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P9 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P10 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P11 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | 1.25 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P12 | 0.100 | 0.50 | 2.50 | 1.0 | 0.25 | 1 | 5.00 | 2 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P13 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 16.0 | 0.50 | <0.12 | <0.5 | <50 |
P14 | 0.050 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 16.0 | 0.50 | <0.12 | <0.5 | <50 |
P15 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P16 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P17 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | 1.25 | >16.0 | 0.50 | <0.12 | <0.5 | <50 |
P18 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P19 | 0.050 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P20 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P21 | <0.025 | <0.25 | 1.25 | 0.5 | 0.12 | 1 | 2.50 | 1 | <0.62 | 16.0 | <0.25 | <0.12 | <0.5 | <50 |
P22 | 0.050 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P23 | 0.050 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 2 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P24 | <0.025 | <0.25 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P25 | <0.025 | 0.50 | 1.25 | 1.0 | 0.12 | 1 | 2.50 | 1 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
P26 | 0.050 | <0.25 | 1.25 | 1.0 | 0.25 | 1 | 2.50 | 1 | <0.62 | >16.0 | <0.25 | <0.12 | <0.5 | <50 |
菌株 | 单核苷酸多态性位置a | PAS耐药浓度 (mg/L;MIC=1) | ||
---|---|---|---|---|
2627314 (plcC) | 2747151 (folC) | 3074495(基因间区: Rv2765-thyA) | ||
P1 | Q462R | - | - | <0.5 |
P2 | Q462R | - | - | <0.5 |
P3 | Q462R | - | G→A | 4 |
P4 | Q462R | - | G→A | 4 |
P5 | Q462R | - | G→A | 4 |
P6 | Q462R | S150R | G→A | 8 |
P7 | Q462R | S150R | G→A | 8 |
P8 | Q462R | S150R | G→A | 16 |
P9 | Q462R | S150R | G→A | >16 |
P10 | Q462R | S150R | G→A | >16 |
P11 | Q462R | S150R | G→A | >16 |
P12 | Q462R | S150R | G→A | >16 |
P13 | Q462R | S150R | G→A | 16 |
P14 | Q462R | S150R | G→A | 16 |
P15 | Q462R | S150R | G→A | 16 |
P16 | Q462R | S150R | G→A | >16 |
P17 | Q462R | S150R | G→A | >16 |
P18 | Q462R | S150R | G→A | 16 |
P19 | Q462R | S150R | G→A | 16 |
P20 | Q462R | S150R | G→A | 16 |
P21 | Q462R | S150R | G→A | 16 |
P22 | Q462R | S150R | G→A | >16 |
P23 | Q462R | S150R | G→A | >16 |
P24 | Q462R | S150R | G→A | >16 |
P25 | Q462R | S150R | G→A | >16 |
P26 | Q462R | S150R | G→A | >16 |
[1] | World Health Oganization. WHO consolidated guidelines on tuberculosis: Module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[2] |
Dookie N, Rmbaran S, Pdayatchi N, et al. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the mole-cular determinants of resistance and implications for personali-zed care. J Antimicrob Chemother, 2018, 73(5): 1138-1151. doi:10.1093/jac/dkx506.
doi: 10.1093/jac/dkx506. URL |
[3] |
郑晓静, 杜博平, 贾红彦, 等. 结核分枝杆菌对氨基水杨酸耐药相关基因的筛选及鉴定. 北京医学, 2012, 34(9): 783-786. doi:CNKI:SUN:BJYX.0.2012-09-003.
doi: CNKI:SUN:BJYX.0.2012-09-003. |
[4] |
Fivian-Hughes AS, Houghton J, Davis EO. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology (Reading), 2012, 158(Pt 2): 308-318. doi:10.1099/mic.0.053983-0.
doi: 10.1099/mic.0.053983-0. URL |
[5] |
Luo M, Li K, Zhang H, et al. Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Infect Drug Resist, 2019, 12:2269-2275. doi:10.2147/IDR.S207259s.
doi: 10.2147/IDR.S207259s. URL |
[6] |
Zhao F, Wang XD, Erber LN, et al. Binding pocket alterations in dihydrofolate synthase confer resistance to para-amino-salicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(3): 1479-1487. doi:10.1128/AAC.01775-13.
doi: 10.1128/AAC.01775-13 pmid: 24366731 |
[7] |
Zhang X, Liu L, Zhang Y, et al. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother, 2015, 59(2): 1320-1324. doi:10.1128/AAC.03695-14.
doi: 10.1128/AAC.03695-14 pmid: 25421465 |
[8] |
Chakraborty S, Gruber T, Barry CE, et al. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science, 2013, 339(6115): 88-91. doi:10.1126/science.1228980.
doi: 10.1126/science.1228980 pmid: 23118010 |
[9] |
Zheng J, Rubin EJ, Bifant P, et al. Para-Aminosalicylic acid is a prodrug tReting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem, 2013, 288(32): 23447-23456. doi:10.1074/jbc.M113.475798.
doi: 10.1074/jbc.M113.475798 pmid: 23779105 |
[10] |
孟繁荣, 杨瑜, 雷杰, 等. 中国氟喹诺酮耐药结核分枝杆菌gyr基因序列特征分析. 实用医学杂志, 2020, 36(11): 1503-1508. doi:10.3969/j.issn.1006-5725.2020.11.019.
doi: 10.3969/j.issn.1006-5725.2020.11.019. |
[11] |
戚应杰, 查晓丹. 耐多药结核分枝杆菌基因位点表达研究. 实用医学杂志, 2016, 32(24): 4118-4121. doi:10.3969/j.issn.1006-5725.2016.24.040.
doi: 10.3969/j.issn.1006-5725.2016.24.040. |
[12] | Barreral L, Cooreman E, de Dieu Iragena J, et al. Policy Guidance on Drug-Susceptibility Testing (DST) of Second-Line Antituberculosis Drugs. Geneva: World Health Organization, 2008. |
[13] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
doi: 10.1126/science.1106753. pmid: 15591164 |
[14] |
Farhat MR, Freschi L, Calderon R, et al. GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nat Commun, 2019, 10(1): 2128. doi:10.1038/s41467-019-10110-6.
doi: 10.1038/s41467-019-10110-6. |
[15] |
Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet, 2018, 50(2): 307-316. doi:10.1038/s41588-017-0029-0.
doi: 10.1038/s41588-017-0029-0 |
[16] |
Hicks ND, Yang J, Zhang X, et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat Microbiol, 2018, 3(9): 1032-1042. doi:10.1038/s41564-018-0218-3.
doi: 10.1038/s41564-018-0218-3. URL |
[17] |
Satta G, Witney AA, Begum N, et al. Role of Whole-Genome Sequencing in Characterizing the Mechanism of Action of para-Aminosalicylic Acid and Its Resistance. Antimicrob Agents Chemother, 2020, 64(9): e00675-20. doi:10.1128/AAC.00675-20.
doi: 10.1128/AAC.00675-20. |
[18] |
Li G, Zhang J, Jiang Y, et al. Cross-resistance of isoniazid, para-aminosalicylic acid and pasiniazid against isoniazid-resis-tant Mycobacterium tuberculosis isolates in China. J Glob Antimicrob Resist, 2020, 20:275-281. doi:10.1016/j.jgar.2019.08.005.
doi: 10.1016/j.jgar.2019.08.005. URL |
[19] |
Sy SK, De Kock L, Diacon AH, et al. N-acetyltransferase genotypes and the pharmacokinetics and tolerability of para-aminosalicylic acid in patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother, 2015, 59(7): 4129-4138. doi:10.1128/AAC.04049-14.
doi: 10.1128/AAC.04049-14 pmid: 25963985 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||