Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (3): 264-272.doi: 10.19982/j.issn.1000-6621.20210699
• Original Articles • Previous Articles Next Articles
CHEN Meng-meng1, DONG Jing1, SUN Qi1, HUANG Mai-ling2, DING Ze-yu3, SHI Yu-ting1, JIA Hong-yan1, DU Bo-ping1, WEI Rong-rong1, XING Ai-ying1, ZHANG Zong-de1(), PAN Li-ping1(
)
Received:
2021-12-08
Online:
2022-03-10
Published:
2022-03-08
Contact:
ZHANG Zong-de,PAN Li-ping
E-mail:zzd417@163.com;panliping2006@163.com
Supported by:
CLC Number:
CHEN Meng-meng, DONG Jing, SUN Qi, HUANG Mai-ling, DING Ze-yu, SHI Yu-ting, JIA Hong-yan, DU Bo-ping, WEI Rong-rong, XING Ai-ying, ZHANG Zong-de, PAN Li-ping. Diagnostic performance of differentially expressed miRNA identified by gene chip in discriminating tuberculous meningitis from viral meningitis[J]. Chinese Journal of Antituberculosis, 2022, 44(3): 264-272. doi: 10.19982/j.issn.1000-6621.20210699
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210699
miRNA | 差异倍数(TBM/VM) | P值 | 染色体上的位置 |
---|---|---|---|
表达上调 | |||
hsa-miR-4281 | 27.602 | 0.000 | chr5:176629449-176629466[-] |
hsa-miR-4516 | 25.018 | 0.000 | chr16:2133120-2133136[+] |
hsa-miR-6090 | 9.575 | 0.013 | chr11:128522430-128522448[+] |
hsa-miR-3663-3p | 6.060 | 0.000 | chr10:117167695-117167717[-] |
hsa-miR-21-5p | 4.817 | 0.000 | chr17:59841273-59841294[+] |
hsa-miR-6087 | 4.272 | 0.001 | chrX:109054544-109054561[+] |
hsa-miR-3960 | 3.629 | 0.001 | chr9:127785879-127785898[+] |
hsa-miR-6510-5p | 3.346 | 0.013 | chr17:41517194-41517215[-] |
hsa-miR-6869-5p | 3.071 | 0.005 | chr20:1392940-1392961[-] |
hsa-miR-7107-5p | 2.713 | 0.001 | chr12:121444326-121444347[-] |
hsa-miR-1273g-3p | 2.603 | 0.003 | chr1:52940370-52940390[+] |
hsa-miR-6821-5p | 2.242 | 0.008 | chr22:49962866-49962888[+] |
hsa-miR-6800-5p | 2.161 | 0.014 | chr19:49832022-49832042[+] |
hsa-miR-7110-5p | 2.025 | 0.024 | chr3:123161799-123161819[+] |
表达下调 | |||
hsa-miR-6858-5p | 0.179 | 0.000 | chrX:154450320-154450341[+] |
hsa-miR-5196-5p | 0.206 | 0.000 | chr19:35345541-35345562[+] |
hsa-miR-642a-3p | 0.261 | 0.000 | chr19:45674978-45674999[+] |
hsa-miR-4496 | 0.263 | 0.001 | chr12:108635849-108635870[+] |
hsa-miR-4419b | 0.267 | 0.002 | chr12:128244547-128244564[+] |
hsa-miR-3162-5p | 0.304 | 0.000 | chr11:59595127-59595149[-] |
hsa-miR-4685-5p | 0.306 | 0.002 | chr10:98431332-98431357[-] |
hsa-miR-7515 | 0.338 | 0.000 | chr2:6650418-6650435[+] |
hsa-miR-6127 | 0.341 | 0.000 | chr1:22633328-22633346[-] |
hsa-miR-6879-5p | 0.356 | 0.000 | chr11:65018510-65018531[+] |
hsa-miR-6824-3p | 0.408 | 0.000 | chr3:48633636-48633656[-] |
hsa-miR-320d | 0.427 | 0.000 | chrX:140926172-140926190[-] |
[1] |
Donovan J, Thwaites GE, Huynh J. Tuberculous meningitis: where to from here? Curr Opin Infect Dis, 2020, 33(3):259-266. doi: 10.1097/QCO.0000000000000648.
doi: 10.1097/QCO.0000000000000648 pmid: 32324614 |
[2] |
Wang YY, Xie BD. Progress on Diagnosis of Tuberculous Meningitis. Methods Mol Biol, 2018, 1754:375-386. doi: 10.1007/978-1-4939-7717-8_20.
doi: 10.1007/978-1-4939-7717-8_20 |
[3] |
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014, 15(8):509-524. doi: 10.1038/nrm3838.
doi: 10.1038/nrm3838 URL |
[4] |
Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells, 2019, 8(8):840. doi: 10.3390/cells8080840.
doi: 10.3390/cells8080840 URL |
[5] |
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol, 2011, 48(1):61-69. doi: 10.1007/s00592-010-0226-0.
doi: 10.1007/s00592-010-0226-0 pmid: 20857148 |
[6] |
Ji F, Yang B, Peng X, et al. Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat, 2011, 18(7):e242-251. doi: 10.1111/j.1365-2893.2011.01443.x.
doi: 10.1111/j.1365-2893.2011.01443.x |
[7] |
Sabir N, Hussain T, Shah SZA, et al. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Front Microbiol, 2018, 9:602. doi: 10.3389/fmicb.2018.00602.
doi: 10.3389/fmicb.2018.00602 URL |
[8] |
中华医学会结核病学分会结核性脑膜炎专业委员会. 2019中国中枢神经系统结核病诊疗指南. 中华传染病杂志, 2020, 38(7):400-408. doi: 10.3760/cma.j.cn311365-20200606-00645.
doi: 10.3760/cma.j.cn311365-20200606-00645 |
[9] |
Poplin V, Boulware DR, Bahr NC. Methods for rapid diagnosis of meningitis etiology in adults. Biomark Med, 2020, 14(6):459-479. doi: 10.2217/bmm-2019-0333.
doi: 10.2217/bmm-2019-0333 URL |
[10] |
Hristea A, Olaru ID, Baicus C, et al. Clinical prediction rule for differentiating tuberculous from viral meningitis. Int J Tuberc Lung Dis, 2012, 16(6):793-798. doi: 10.5588/ijtld.11.0687.
doi: 10.5588/ijtld.11.0687 pmid: 22507645 |
[11] |
Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers,are miRNA the answer? Tuberculosis (Edinb), 2019, 118:101860. doi: 10.1016/j.tube.2019.101860.
doi: 10.1016/j.tube.2019.101860 URL |
[12] |
Balzano F, Deiana M, Dei Giudici S, et al. miRNA Stability in Frozen Plasma Samples. Molecules, 2015, 20(10):19030-19040. doi: 10.3390/molecules201019030.
doi: 10.3390/molecules201019030 URL |
[13] |
Glinge C, Clauss S, Boddum K, et al. Stability of Circulating Blood-Based MicroRNAs-Pre-Analytic Methodological Consi-derations. PLoS One, 2017, 12(2):e0167969. doi: 10.1371/journal.pone.0167969.
doi: 10.1371/journal.pone.0167969 URL |
[14] |
尹慧敏, 贾永林, 李燕飞, 等. 结核性脑膜炎患者脑脊液外泌体中let-7d表达的研究. 中国实用神经疾病杂志, 2017, 20(6):9-12. doi: 10.3969/j.issn.1673-5110.2017.06.003.
doi: 10.3969/j.issn.1673-5110.2017.06.003 |
[15] |
路雁惠, 郭斌, 张锐毅, 等. 结核性脑膜炎患者脑脊液外泌体中Let-7b的表达水平及临床意义. 中风与神经疾病杂志, 2018, 35(12):1107-1110. doi: 10.19845/j.cnki.zfysjjbzz.2018.12.013.
doi: 10.19845/j.cnki.zfysjjbzz.2018.12.013 |
[16] |
Pan D, Pan M, Xu YM. Mir-29a expressions in peripheral blood mononuclear cell and cerebrospinal fluid: Diagnostic value in patients with pediatric tuberculous meningitis. Brain Res Bull, 2017, 130:231-235. doi: 10.1016/j.brainresbull.2017.01.013.
doi: 10.1016/j.brainresbull.2017.01.013 URL |
[17] |
Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019, 40:564-573. doi: 10.1016/j.ebiom.2019.01.023.
doi: 10.1016/j.ebiom.2019.01.023 URL |
[18] |
Pan L, Liu F, Zhang J, et al. Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Front Cell Infect Microbiol, 2019, 9:323. doi: 10.3389/fcimb.2019.00323.
doi: 10.3389/fcimb.2019.00323 URL |
[19] |
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem, 2010, 56(11):1733-1741. doi: 10.1373/clinchem.2010.147405.
doi: 10.1373/clinchem.2010.147405 URL |
[20] |
Lam A, Prabhu R, Gross CM, et al. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2):L218-L229. doi: 10.1152/ajplung.00162.2017.
doi: 10.1152/ajplung.00162.2017 URL |
[21] |
Shariq M, Quadir N, Sheikh JA, et al. Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy, 2021, 17(3):814-817. doi: 10.1080/15548627.2020.1850009.
doi: 10.1080/15548627.2020.1850009 pmid: 33190592 |
[22] |
Zonghai C, Tao L, Pengjiao M, et al. Mycobacterium tuberculosis ESAT6 modulates host innate immunity by downregulating miR-222-3p target PTEN. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(1):166292. doi: 10.1016/j.bbadis.2021.166292.
doi: 10.1016/j.bbadis.2021.166292 URL |
[23] |
Hu W, Chan H, Lu L, et al. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol, 2020, 101:41-50. doi: 10.1016/j.semcdb.2019.07.014.
doi: 10.1016/j.semcdb.2019.07.014 URL |
[24] |
Ernst JD. Mechanisms of M.tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe, 2018, 24(1):34-42. doi: 10.1016/j.chom.2018.06.004.
doi: S1931-3128(18)30316-0 pmid: 30001523 |
[25] |
Wang F, Huang G, Shen L, et al. Genetics and Functional Mechanisms of STAT3 Polymorphisms in Human Tuberculosis. Front Cell Infect Microbiol, 2021, 11:669394. doi: 10.3389/fcimb.2021.669394.
doi: 10.3389/fcimb.2021.669394 URL |
[26] |
Watkins SK, Hurwitz AA. FOXO3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology, 2012, 1(2):252-254. doi: 10.4161/onci.1.2.18241.
doi: 10.4161/onci.1.2.18241 URL |
[27] |
Lu Y, Zhu Y, Wang X, et al. FOXO3 rs12212067: T>G Association with Active Tuberculosis in Han Chinese Population. Inflammation, 2016, 39(1):10-15. doi: 10.1007/s10753-015-0217-y.
doi: 10.1007/s10753-015-0217-y URL |
[28] |
Ratajczak-Wrona W, Jablonska E, Garley M, et al. PI3K-Akt/PKB signaling pathway in neutrophils and mononuclear cells exposed to N-nitrosodimethylamine. J Immunotoxicol, 2014, 11(3):231-237. doi: 10.3109/1547691X.2013.826307.
doi: 10.3109/1547691X.2013.826307 pmid: 23971717 |
[29] |
Shim JW, Madsen JR. VEGF Signaling in Neurological Disorders. Int J Mol Sci, 2018, 19(1):275. doi: 10.3390/ijms19010275.
doi: 10.3390/ijms19010275 URL |
[30] |
Misra UK, Kalita J, Singh AP, et al. Vascular endothelial growth factor in tuberculous meningitis. Int J Neurosci, 2013, 123(2):128-132. doi: 10.3109/00207454.2012.743127.
doi: 10.3109/00207454.2012.743127 pmid: 23098361 |
[31] |
Abd-El-Fattah AA, Sadik NAH, Shaker OG, et al. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys, 2013, 67(3):875-884. doi: 10.1007/s12013-013-9575-y.
doi: 10.1007/s12013-013-9575-y pmid: 23559272 |
[32] |
Kathirvel M, Saranya S, Mahadevan S. Expression levels of candidate circulating microRNAs in pediatric tuberculosis. Pathog Glob Health, 2020, 114(5):262-270. doi: 10.1080/20477724.2020.1761140.
doi: 10.1080/20477724.2020.1761140 pmid: 32401176 |
[33] |
Wang C, Yang S, Liu CM, et al. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb), 2018, 108:26-34. doi: 10.1016/j.tube.2017.08.010.
doi: 10.1016/j.tube.2017.08.010 URL |
[34] |
Wu Z, Lu H, Sheng J, et al. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett, 2012, 586(16):2459-2467. doi: 10.1016/j.febslet.2012.06.004.
doi: 10.1016/j.febslet.2012.06.004 URL |
[35] |
Zhao Z, Hao J, Li X, et al. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett, 2019, 593(12):1326-1335. doi: 10.1002/1873-3468.13438.
doi: 10.1002/1873-3468.13438 URL |
[1] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[2] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[3] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[4] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[5] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[6] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[7] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[8] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[9] | Wang Xiaomin, Chen Jinyun, Zeng Yuqin, Ma Quan, Kong Xingxing, Meng Jianzhou, Lu Shuihua. Interpretation of the third edition of WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1006-1022. |
[10] | Mei Chunlin, Yang Chengqing, Du Ronghui, Cao Tanze, Feng Wei, Chen Shufang, Liu Xiuping, Ou Jiali. Diagnostic accuracy of GeneXpert MTB/RIF in detecting pulmonary tuberculosis with extremely low loads of MTB in bronchoalveolar lavage fluid in general hospitals [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1037-1041. |
[11] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[12] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[13] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[14] | Zhang Hui, Ge Li, Zhang Yuhan, Feng Ruie. Clinicopathologic characteristics of 34 cases non-tuberculous mycobacterial disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 756-762. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||